INL/MIS-22-66312

FORCE – Transient Physical Modeling Workshop

Hybrid Model Development

Presented by: Dr. Daniel Mikkelson Prepared by: Dr. Daniel Mikkelson and Dr. Konor Frick

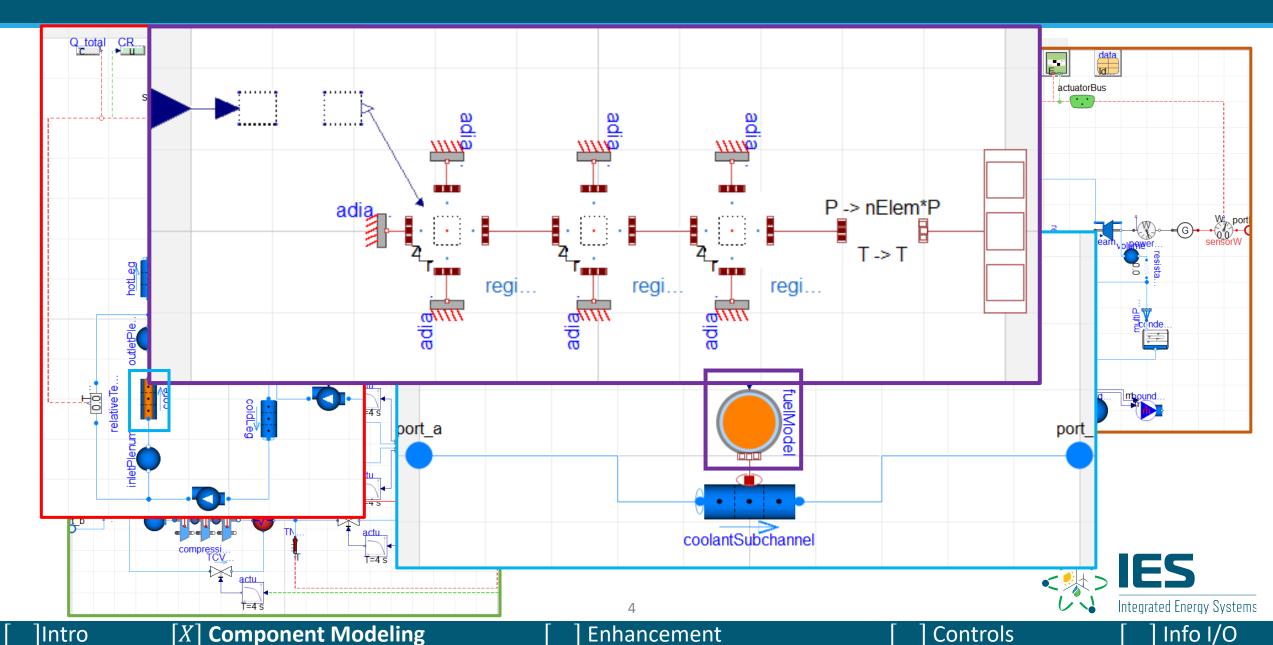
a har while philosophic states and a state of the state of the

Session Agenda

1. Component model development (30 min)

- a) Defining variables with units
- b) Using functions
- c) Figure design
- d) UI terminology
- 2. Additional model enhancement (10 min)
 - a) Add features to integrated models
- 3. Controls (10 min)
 - a) Hybrid standard sensor/actuator buses
- 4. How is information conveyed to and from Hybrid? (10 min)
 - a) .mat standard output
 - b) Text file reading and writing
 - c) Making easily accessible data
 - d) Scripting

2


Controls

- Final Modelica systems are typically interconnected instantiations of developed models
- In the drag-and-drop GUI, objects use connectors to complete the set of equations
 - Connectors "flow" a variable and "stream" its characteristics along its path
 - Connectors must be properly internally connected
- Individual models are typically self-contained, needing only port connections to be well-posed

Enerav Systems

Info I/O

- Component models can be built in various ways
 - Example: Simplified heat exchanger (NTU, LMTD)
 - Allows for custom physics, assumptions
 - Goal should always be to code as reconfigurable and replaceable as possible
 - Non drag-and-drop models do tend to be more application-specific
- Extension of basic physics packages possible
 - Example: Custom valves
 - Allows for new iterations of other models
 - Ensures appropriate connection of ports and desired base physics packages

Controls

Intro

- Variable types you may use within Modelica are:
 - Integer
 - Real
 - Boolean
 - String
 - Package
 - Technically a collection of variables, but typically declared in variable section
- Where possible, units are used within Hybrid
 - Some variable type declarations include units along with them
- Keywords:

Intro

- Parameter
- Constant
- Replaceable commonly used with package declarations
- Input typically used in functions
- Output typically used in functions
- Modelica operator "der()"

Controls

 An NTU heat exchanger is an efficiency-based heat exchanger requiring no "real" geometric data (no pipe lengths, number of pipes, etc.)

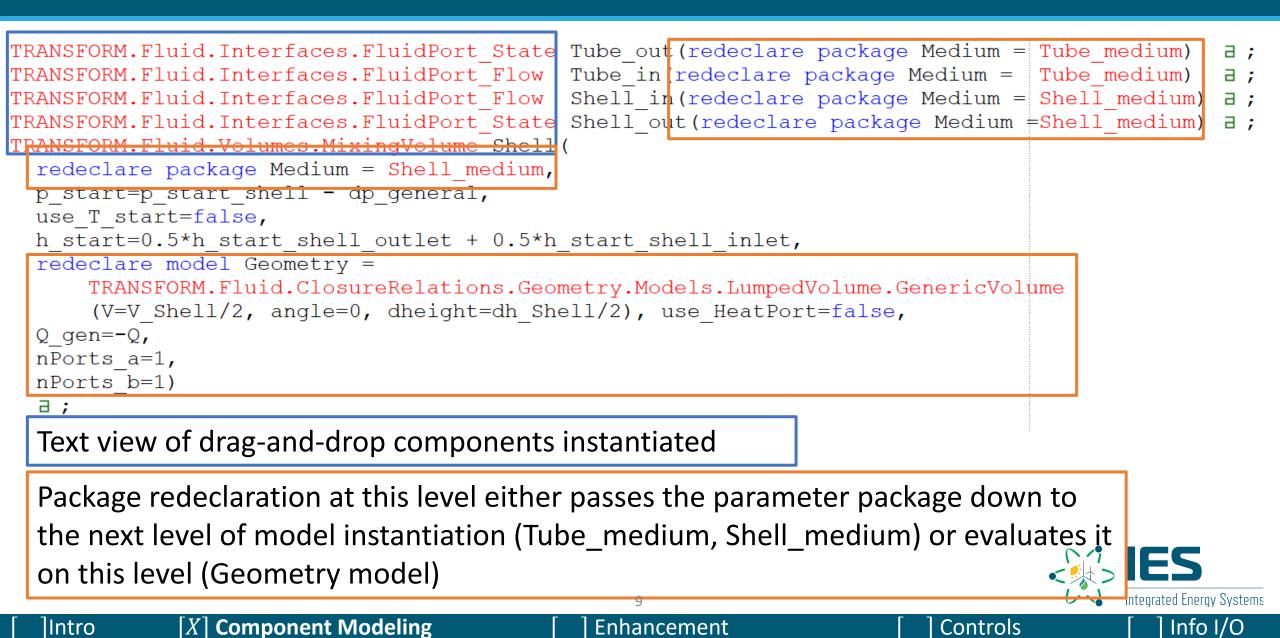
$$Q_{NTU} = Q_{max} \frac{1 - e^{-NTU(1 - C_R)}}{1 - C_R e^{-NTU(1 - C_R)}}$$

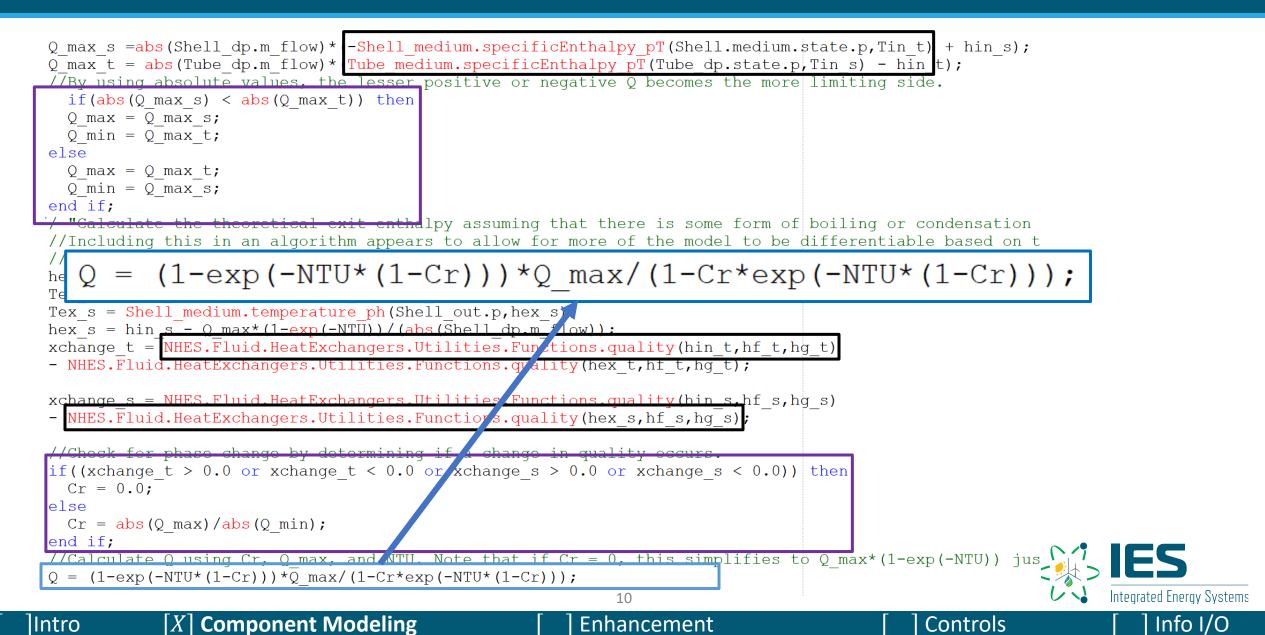
- Need to calculate Q_{max} and C_R to find heat rate
- Once calculation is complete, a method of object integration needs to be developed

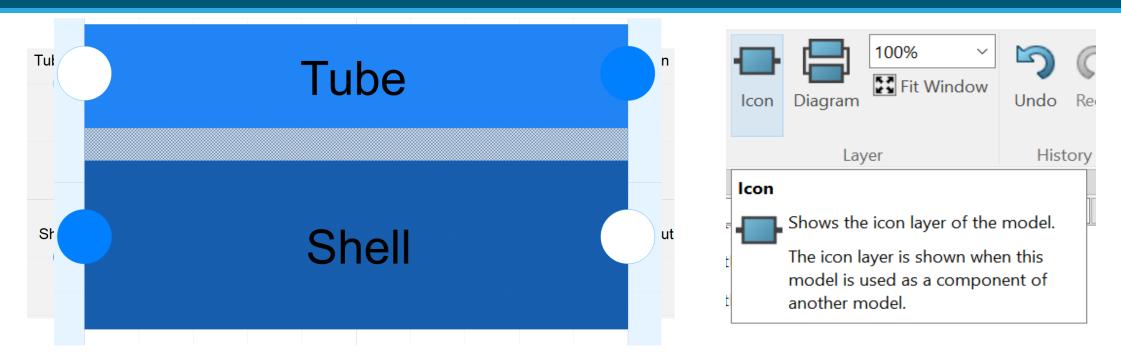
Controls

Intro

Modelica.Units.SI.Power Q
"Power source/sink in each of the heat transfer volumes";
Modelica.Units.SI.Power Q_total "Total actual HX power";
Modelica.Units.SI.Power Q_max "Minimum of Q_max_s and Q_max_t";
Modelica.Units.SI.Power Q_max_s
"Max Q of shell side assuming reaches inlet tube temperature";
Modelica.Units.SI.Power Q_max_t
"Max Q of tube side assuming reaches inlet shell temperature";
Modelica.Units.SI.Power Q_min "This value is used in Cr calculations";
Real Cr(start = Cr_init) "Mass*heatcapacity ratio of the HX, minimum divided by maximum.
In this model, it's calculated using massflow*deltaEnthalpy";


<pre>parameter Real K_tube(unit = "1/m4")</pre>	'Geometry-less pressure loss coefficient";
<pre>parameter Real K_shell(unit = "1/m4")</pre>	"Geometry-less pressure loss coefficient";


replaceable package Tube_medium = Modelica.Media.Water.StandardWater 🛛 ; replaceable package Shell_medium = Modelica.Media.Water.StandardWater 🗃 ;


parameter Real NTU = 4 "Characteristic NTU of HX" annotation(Dialog(tab="General", group="Sizing"));

Info I/O

Dymola contains drawing methods and image import capabilities to design the instantiation graphic

Intro

Info I/O

Component Modeling – Custom Valves

```
model ValveLinear "Valve for water/steam flows with linear pressure drop"
// medium states
state a = Medium.setState phX(port a.p, inStream(port a.h outflow), inStream(port a.Xi outflow));
state b = Medium.setState phX(port b.p, inStream(port b.h outflow), inStream(port b.Xi outflow));
// Pressure drop in design flow direction
dp = port a.p - port b.p;
// Design direction of mass flow rate
m flow = port a.m flow;
assert (m flow > -m flow small or allowFlowReversal, "Reversing flow occurs even though allowFlowReversal is false");
// Mass balance (no storage)
port a.m flow + port b.m flow = 0;
// Transport of substances
port a.Xi outflow = inStream(port b.Xi outflow);
port b.Xi outflow = inStream(port a.Xi outflow);
port a.C outflow = inStream(port b.C outflow);
```


Controls

Intro

Component Modeling – Custom Valves

- We can have other kinds of valves though.
- What about a valve that internally enforces a [0,1] limit?
- Or a valve that opens at a given pressure?

```
p_in = port_a.p;
if p_in>p_spring_then
der(opening) = (1-opening)/tau;
else
der(opening) = (open_min-opening)/tau;
end if;
dp = port a.m flow*sqrt(port a.m flow*port a.m flow + 0.001*0.001)*K/((opening+0.001));
```

Controls

Info I/O

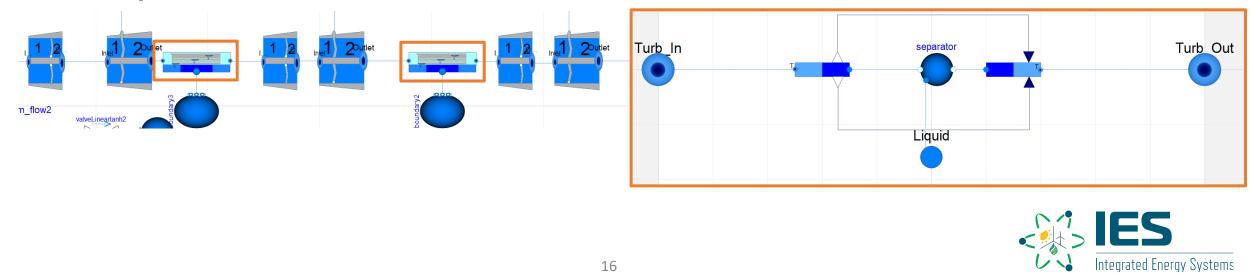
Intro

Component Modeling - Review

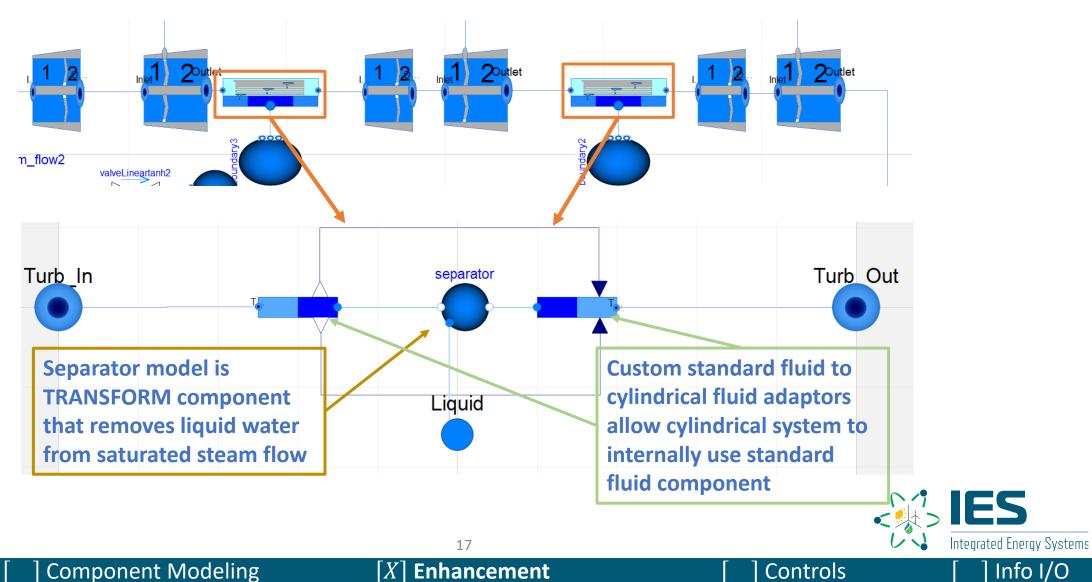
- Variable types and declarations
 - Reals, strings, integers, packages
- If statements,
 - Explicit, must be balanced
- GUI development
- UI development
 - Annotation, "replaceable" keyword
- Model extension
 - Use of partial models
 - Allows for many models built from few base classes

Controls

Enhancing Existing Models


- Use of coding and established models is possible
 - Example: Cylindrical physics adaptive moisture separator
 - Can be advantageous for additional calculations not typically made in base components
 - Can allow for replacement of old equations in new models

Controls


Model Enhancement

- Hybrid contains a cylindrical fluid motion based stage by stage turbine model
- Required a new connector port that communicates entirety of velocity vector
- To avoid re-writing all components, some old models are adapted

Info I/O

Model Enhancement

Intro

Component Modeling

Enhancement [X]

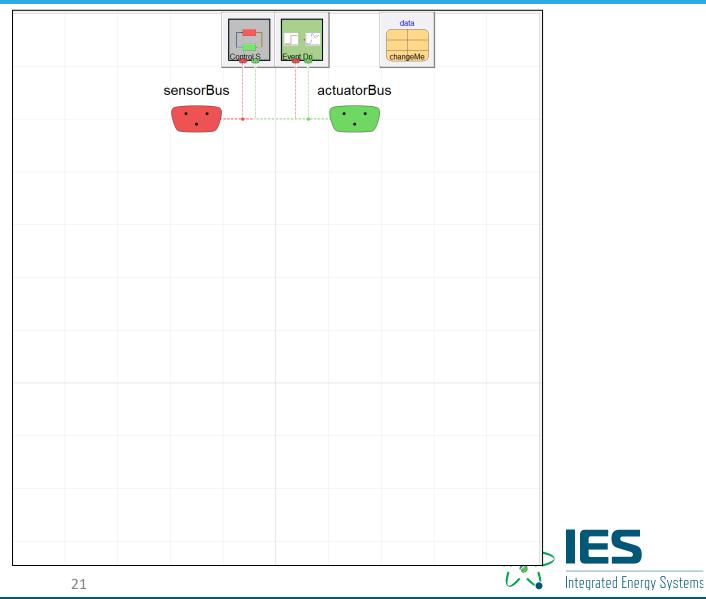
Controls

Model Enhancement

- Using top-level variables can help determine some values may be "hidden" or simply difficult to find within a large system
 - Example: STHX standard model does not calculate Q_total, but that variable could easily be added
- Variables embedded within object instantiations can be referenced by Name.subset.variable

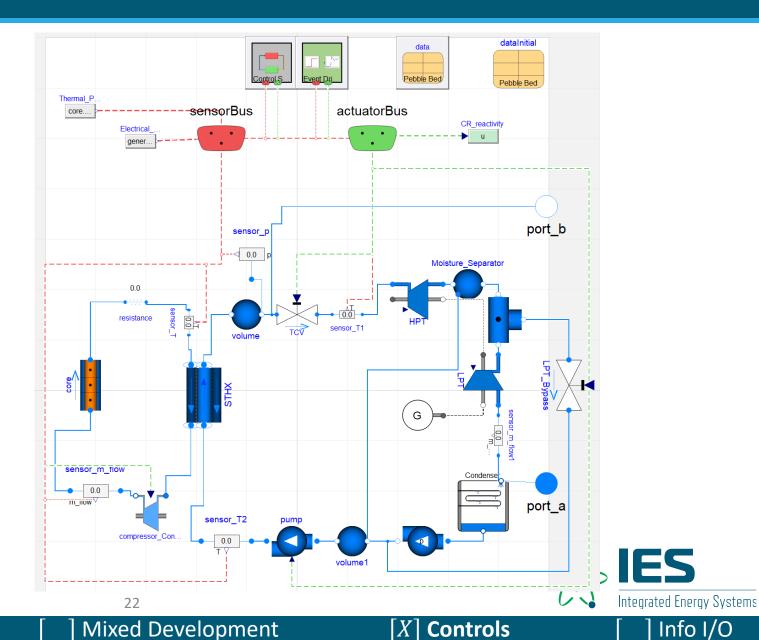
Controls

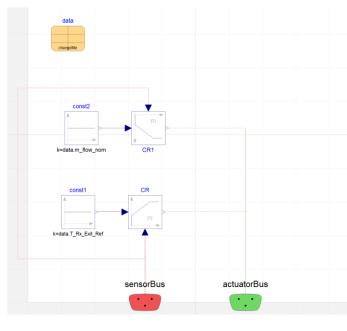
- Published models are designed to follow the same control system
 - Example: HTGR model
 - Standard control mechanism built into package development
 - Sensor buses measure sensor inputs
 - Actuator buses send control signals
- Outside input can be used for control setpoints
 - 2 main methods for this:
 - Text file generation for in-model designated value reading
 - Use of the Python interface

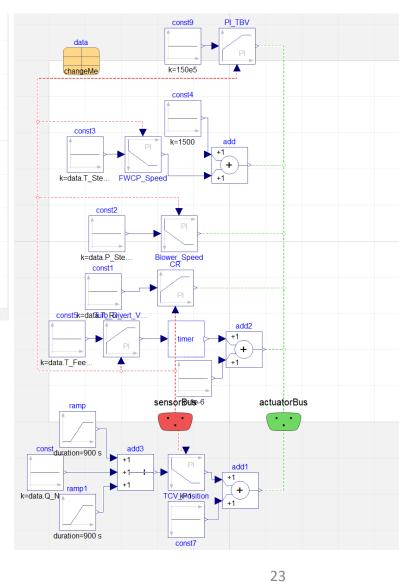

[X] Controls

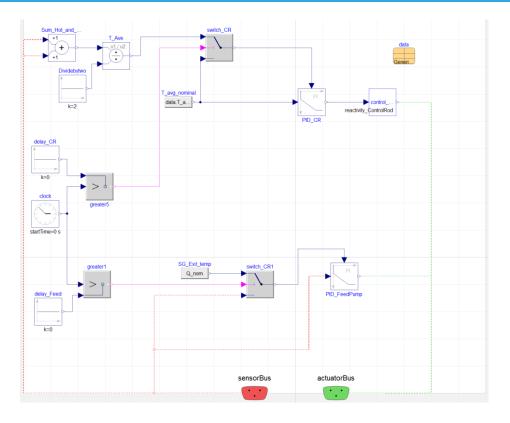
- Control methods use a variety of different components combined to obtain desired actions
 - P/PI/PID controller
 - Switches
 - Multi-signal add blocks
 - Min/max filters
 - Timers and delays
 - Outside input
- All control options for single application must ensure that the equation set is balanced
 - Use "dummy" connections to fill out equation set

 Controls are part of standard submodule that main Hybrid models extend from


 This structure is included in every development package




Info I/O


- Red dashed lines connect to sensor bus
- Green dashed lines connect to actuator bus
- Control systems can be interchanged at top-level

Models by Coding

[X] Controls

Component Modeling Intro

Controls in Hybrid – Text Input

- Modelica standard library component Blocks.Sources.CombiTimeTable
- Reads values from second column of table from file
- Model parameters are text file name, table name, and time interval

double	BOP(168,2)	#Comme	double	NetDemand(168,2)
0	381839590	. 297	0	23477782.3211
1	391187130	.461	1	-108378615.959
2	6042176.93	1138	2	-168166138.839
3	147556178	.237	3	-45170911.9826
4	309377136	.901	4	19438496.2208
5	303454190	.736	5	-46466311.757
6	348413012	.253	6	47259297.1509
7	130566312	.461	7	123826503.358
8	412170792	.628	8	129749920.261
9	45319131.8	8992	9	195600686.271
10	228825022	.847	10	241760712.801
11	289588649	.823	11	337319096.664
12	102012866	.462	12	372335351.97
13	188105637	.172	13	385594609.923
14	358188099	. 205	14	404239546.583
15	41535328.3	3639	15	421325039.017
16	209993776	.358	16	438220475.573
17	84669633.3	177	17	455055225.533
18	363490063	.243	18	466066895.714
19	38664551.0	6855	19	473683321.603
20	75755792.4	4757	20	466941019.326
21	259458790	.02	21	430432881.872
22	263891535	.494		

Info I/O

Information Output Format

- Default output format is a binary .mat file
 - This file is readable by Matlab
 - We have Python scripts that can also read these files
- Output frequency is mostly userdefined
 - User chooses either number of output intervals or specified interval length
 - System state during events are typically also written into .mat file

General Translatio	n Output Debug Compiler Realtime FMI Export FMI	Import								
Experiment										
Model N	HES.GasTurbine.Turbine									
Result T	urbine									
Max run time	lot set	S								
Simulation interval										
Start time 0		S								
Stop time 1		S								
Stop when steady state is reached										
Output interval										
\bigcirc Interval length	0	S								
Number of interv	als 500									
Integration										
Algorithm	Dassl	V .								
Tolerance	0.0001									
Fixed Integrator Step	0	S								

Intro

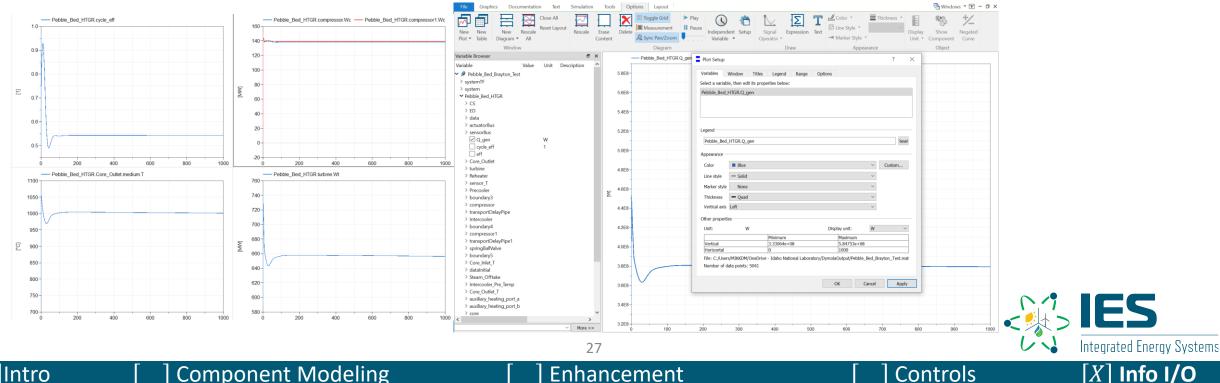
25

Controls

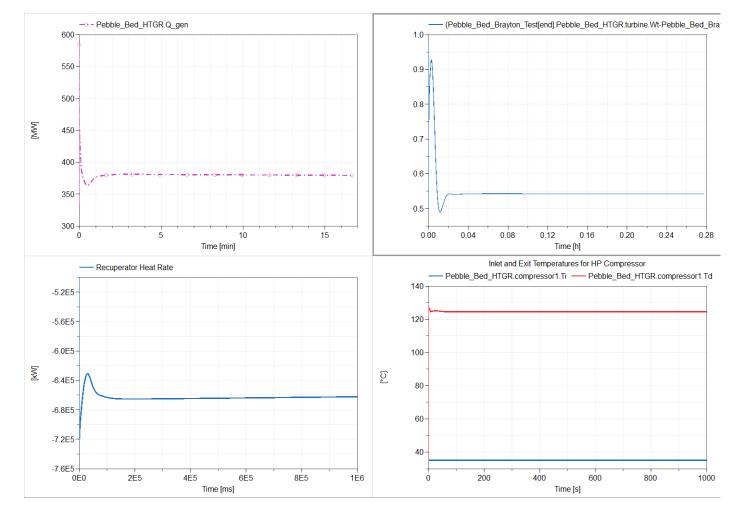
Information Output

- Default output options are seen in the figure on the right
 - "Textual data format" option allows for more straightforward reading option
- Options exist regarding what calculations to store:
 - Add protected variables
 - Storing at events

General T	ranslation	Output	Debug	Compiler	Realtime	FMI Export	FMI Im	ро
ormat			_					
Textual o	lata format							
Double p	recision							
itore				Ctore ad	ditional variab	loc		
_								
State var					otected variabl			
Derivativ					variables; ign	ore selections ir	n model	
Output va								
<u> </u>	variables							
Output selection	n			- Complete	result snapsh	otc		
				complete	result shapsh			
	int time grid iables at eve			_	between snap			S
			at ston time		ie stamps in si	napshot file nam	ies	
	iables to res		at stop time		ie stamps in si	napshot file nam	ies	
			at stop time		ie stamps in si	napshot file nam	165	
Write var	iables to resu	ult file only a	at stop time		e stamps in si	napshot file nam	165	
Write var	iables to resu	ult file only a	at stop time		e stamps in si	napshot file nam	165	
Write var	iables to resi	ult file only a	at stop time		e stamps in s	napshot file nam	105	
Write var Data set Number of re Post-processin	iables to resu esults to keep g commands	ult file only a			· 	napshot file nam	1es	
Write var Data set Number of re Post-processin	iables to resu esults to keep g commands	o ing comman	nds are exec	2	· 	napshot file nam	165	•
Write var Data set Number of re Post-processin The enabled	iables to rest esults to keep g commands post-process Titl	o ing comman	nds are exec Desc	2 zuted after sin	· 	·	165	V
Write var Data set Number of re Post-processin The enabled	iables to rest esults to keep g commands post-process Titl	ing comman	nds are exec Desc	2 zuted after sin	nulation.	·		
Write var Data set Number of re Post-processin The enabled	iables to rest esults to keep g commands post-process Titl	ing comman	nds are exec Desc	2 zuted after sin	nulation.	·		
Write var Data set Number of re Post-processin The enabled	iables to rest esults to keep g commands post-process Titl	ing comman	nds are exec Desc	2 zuted after sin	nulation.	·		
Write var Data set Number of re Post-processin The enabled	iables to rest esults to keep g commands post-process Titl	ing comman	nds are exec Desc	2 zuted after sin	nulation.	·	ies	
Write var Data set Number of re Post-processin The enabled	iables to rest esults to keep g commands post-process Titl	ing comman	nds are exec Desc	2 zuted after sin	nulation.	·	les	
Write var Data set Number of re Post-processin The enabled	iables to rest esults to keep g commands post-process Titl	ing comman	nds are exec Desc	2 zuted after sin	nulation.	·	Ies	


Controls

Enhancement


Plotting Results

- Dymola has plotting capabilities built into the program
- Plots can be accessed during simulation or generated from loaded results
- Plot generation can be scripted

Generating Plotting Scripts

- Generating plots to the right is done via Simulation tab within Dymola
- Custom expressions can be plotted (see top right graph)

[X] Info I/O

Intro

Generating Plotting Scripts

D 🖒 🔚	り で ()	• 😒 =		Generate Script	?	×		Externa
File	Graphics	Docume	ntat	Store script for	Store variables at		ut	
Run Script ~ Variable B Variable	Script ▼ S New S S Open	Commands Commands Script Script ate Script	Tr	 Command log Plot setup Animation setup All settings Translation settings Output settings Variables 	 Initial Final Store which variable Parameters ar All Also include 		í Setup	Continue Linearize Save in Mod
 ✓ Ø Peb > system > system 	C:/Use	ers/MIKKDM, ers/MIKKDM,		Include result filenames Store in model as command —	Simulation se	tup	iablesout R_Sim.mo	
				OK	Cancel	Apply		

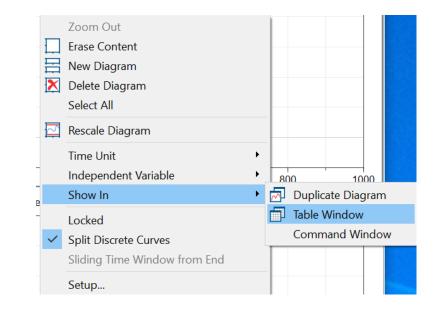
Controls

Plotting Script Example

// Script generated by Dymola Tue Feb 15 17:04:50 2022

// Plot commands

removePlots(false);


createPlot(id=1, position={4, 62, 884, 547}, y={"Pebble Bed HTGR.Q gen"}, ran createPlot(id=2, position={35, 35, 884, 547}, y={"Pebble Bed HTGR.cycle eff"} createPlot(id=2, position={35, 35, 884, 547}, y={"Pebble Bed HTGR.compressor. createPlot(id=2, position={35, 35, 884, 547}, y={"Pebble Bed HTGR.Core Outlet createPlot(id=2, position={35, 35, 884, 547}, y={"Pebble Bed HTGR.turbine.Wt" createPlot(id=4, position= $\{0, 0, 1479, 1047\}$, y= $\{"Pebble Bed HTGR.Q gen"\}$, ra createPlot(id=4, position={0, 0, 1479, 1047}, y=fill("", 0), range={0.0, 0.28 plotExpression(apply((Pebble Bed Brayton Test[end].Pebble Bed HTGR.turbine.Wt Pebble Bed Brayton Test[end].Pebble Bed HTGR.compressor.Wc)/Pebble Bed Brayto createPlot(id=4, position={0, 0, 1479, 1047}, y={"Pebble Bed HTGR.Reheater.Q" createPlot(id=4, position={0, 0, 1479, 1047}, y={"Pebble Bed HTGR.compressor1 createTable(id=3, position={55, 50, 914, 487}, y={"Pebble Bed HTGR.compressor

[X] Info I/O

Exporting Specific Variables from Dymola

- There are more plotting options in Excel
- Specific variables can be selected and placed into "Table Window"
- At that point, copy and paste will insert the results directly into Excel sheet
 - Note that events may result in 2 values listed in a single cell, for plotting purposes these commas must be removed

	0	0.0045180586	0.0045180595	0.0045180605	0 19992003	0.39984006	0 5997601	0.7996801	0.999600
	-				0.15552005				
Pebble_Bed_HTGR.compressor.Wc [MW]	0.9991799	149.60558	149.60558	149.60558	142.72832	143.46992	143.47206	143.3964	143.3082
Pebble_Bed_HTGR.compressor1.Wc [MW]	1.0057143	150.58292	150.58292	150.58292	143.66074	144.40718	144.40933	144.33316	144.2444
Pebble_Bed_HTGR.compressor1.Tstart_in [°C]	850								
Pebble_Bed_HTGR.compressor1.pout [bar]	19.533932	63.56334	63.56334	63.56334	90.25168	88.64565	86.86325	85.14937	83.500
Pebble_Bed_HTGR.compressor1.hout [J/kg]	1606167.4	2089831.5	2089831.5	2089831.5	2074944.4	2076567.5	2076572.1	2076406.8	207621
Pebble_Bed_HTGR.cycle_eff [1]	0.97458786	0.49266833	0.49266833	0.49266833	0.6730174	0.693019	0.70545113	0.71750605	0.729296
Pebble_Bed_HTGR.Reheater.Q [MW]	-262.43204	-498.30692	-498.30692	-498.30692, -498.30695	-717.0858	-718.968	-717.0089	-715.27826	-713.6230
Pebble_Bed_HTGR.Reheater.Tin_t [°C]	475.60684	468.89438	468.89438	468.89438	606.87915	607.5953	606.45	605.5258	604.6643
Pebble_Bed_HTGR.Reheater.hin_t [J/kg]	3888426.5	3853567.3	3853567.5	3853567.5	4570145.5	4573864.5	4567917	4563117.5	455864

Controls

Intro

Initialization

- Determining a physical initialization state can be the most challenging portion of a successful simulation within Dymola
- Initialization default values can be overridden in simulation
- At the end of simulations, a complete system state is written to a text file
 - Default file name is dsfinal.txt and it is overwritten every simulation
- That text file can be imported overriding the guess values written into the text

Variable Naming Convention

- Variables within Modelica are not allowed to have spaces in their names and names must begin with letters
 - Vector notation within Modelica does have spaces, [i, j, k, etc.]
- Variable names in result files have object levels separated by periods
 - Example: CTES.E_Stored
 - Example: NSSS.core.port_a.m_flow
 - Example: HTGR.core[3].medium.T
- Time is in seconds by default but this can be changed in the plot or table window
- Other variable units are SI standard by default

Controls

Summary

- We develop models within Hybrid with the intent of integrating them into larger drag-and-drop systems
- This development can start from line-by-line coding or by adjusting existing models
- Hybrid contains standardization of controls and model structures to streamline integration
- Output can be interpreted internally or sent externally for analysis

Available Literature on Models

- Literature:
 - 1) <u>https://www.osti.gov/biblio/1569288-status-report-nuscale-module-developed-modelica-framework</u>. -- Frick, Konor L. Status Report on the NuScale Module Developed in the Modelica Framework. United States: N. p., 2019. Web. doi:10.2172/1569288.
 - <u>https://www.osti.gov/biblio/1333156-status-component-models-developed-modelica-framework-high-temperature-steam-electrolysis-plant-gas-turbine-power-plant</u> -- Suk Kim, Jong, McKellar, Michael, Bragg-Sitton, Shannon M., and Boardman, Richard D. Status on the Component Models Developed in the Modelica Framework: High-Temperature Steam Electrolysis Plant & Gas Turbine Power Plant. United States: N. p., 2016. Web. doi:10.2172/1333156.
 - <u>https://www.osti.gov/biblio/1468648-status-report-component-models-developed-modelica-framework-reverse-osmosis-desalination-plant-thermal-energy-storage</u> --Kim, Jong Suk, and Frick, Konor. Status Report on the Component Models Developed in the Modelica Framework: Reverse Osmosis Desalination Plant & Thermal Energy Storage. United States: N. p., 2018. Web. doi:10.2172/1468648.
 - 4) <u>https://www.osti.gov/biblio/1333156-status-component-models-developed-modelica-framework-high-temperature-steam-electrolysis-plant-gas-turbine-power-plant</u> -- Suk Kim, Jong, McKellar, Michael, Bragg-Sitton, Shannon M., and Boardman, Richard D. Status on the Component Models Developed in the Modelica Framework: High-Temperature Steam Electrolysis Plant & Gas Turbine Power Plant. United States: N. p., 2016. Web. doi:10.2172/1333156
 - 5) <u>https://www.osti.gov/biblio/1557660-design-operation-sensible-heat-peaking-unit-small-modular-reactors</u> -- Frick, Konor, Doster, Joseph Michael, and Bragg-Sitton, Shannon. Design and Operation of a Sensible Heat Peaking Unit for Small Modular Reactors. United States: N. p., 2018. Web. doi:10.1080/00295450.2018.1491181.
 - 6) <u>https://www.osti.gov/biblio/1557661-thermal-energy-storage-configurations-small-modular-reactor-load-shedding</u> -- Frick, Konor, Misenheimer, Corey T., Doster, J. Michael, Terry, Stephen D., and Bragg-Sitton, Shannon. Thermal Energy Storage Configurations for Small Modular Reactor Load Shedding. United States: N. p., 2018. Web. doi:10.1080/00295450.2017.1420945.
 - 7) <u>https://www.osti.gov/biblio/1562960-dynamic-performance-analysis-high-temperature-steam-electrolysis-plant-integrated-within-nuclear-renewable-hybridenergy-systems</u> -- Kim, Jong Suk, Boardman, Richard D., and Bragg-Sitton, Shannon M. Dynamic performance analysis of a high-temperature steam electrolysis plant integrated within nuclear-renewable hybrid energy systems. United Kingdom: N. p., 2018. Web. doi:10.1016/j.apenergy.2018.07.060.
 - <u>https://www.osti.gov/biblio/1357452-modeling-control-dynamic-performance-analysis-reverse-osmosis-desalination-plant-integrated-within-hybrid-energy-systems</u>. Kim, Jong Suk, Chen, Jun, and Garcia, Humberto E. Modeling, control, and dynamic performance analysis of a reverse osmosis desalination plant integrated within hybrid energy systems. United States: N. p., 2016. Web. doi:10.1016/j.energy.2016.05.050.