
Training on Feasible Actuator 
Range Modifier (FARM)

Haoyu Wang, Roberto Ponciroli, Richard Vilim
Argonne National Laboratory
haoyuwang@anl.gov

IES Tools Virtual Workshop: 
Capability Overview and Training

March 18, 2022



Table of Content

• FARM capability overview
• Software installation
• Input creation and running the code
• Output analysis
• Future Directions



1. FARM capability overview

• FARM: Feasible Actuator Range Modifier
• FARM is a RAVEN plugin to meet the supervisory control needs.
• FARM helps validate the issued actuator value, to meet both

• Explicit constraints, and 
• Implicit constraints.

• Q1: What are these constraints?
Let’s use a Gas Turbine to explain:

Set-Point “r(t)”
Desired Power Output

PID Controller

System

Control Action “u(t)”
Fuel Flow Rate

Measurement “y(t)”
Output Power

Explicit constraints:
• Power output to grid;
• Power ramp rate, etc.

Implicit constraints:
• Firing Temperature, etc.



1. FARM capability overview

• FARM: Feasible Actuator Range Modifier

Without FARM

Set-Point “r(t)”
Desired Power Output

PID Controller

Control Action “u(t)”

System

Measurement “y(t)”

• Q2: Where is FARM in the feedback loop control?
Set-Point “r(t)”

Desired Power Output

PID Controller

Control Action “u(t)”

System

Measurement “y(t)”

FARM

Adjusted Set-Point “ v(t)”

With FARM

When integrated with HERON, 
FARM can provide feedback to 
the power dispatcher.



1. FARM capability overview

• FARM: Feasible Actuator Range Modifier
• Q3: What’s the effects of FARM?

Without FARM:
• System run on original power 

setpoint
• Implicit constraints were 

violated (Firing temperature)

With FARM:
• Power setpoint was adjusted
• Implicit constraints were met 

(Firing temperature)



2. Software installation

• FARM is an open-source software
• https://github.com/Argonne-National-Laboratory/FARM
• In order to run FARM, RAVEN is a pre-requisite.

• FARM installation consists of 2 steps:

• Step 1: Download FARM source code using git
haoyuwang@p075722 MINGW64 /d/GitProjects/training

$ git clone https://github.com/Argonne-National-Laboratory/FARM.git

• Step 2: Register FARM plugin in RAVEN
haoyuwang@p075722 MINGW64 /d/GitProjects/training/raven (devel)

$ ./scripts/install_plugins.py -s /d/GitProjects/training/FARM/

https://github.com/Argonne-National-Laboratory/FARM


3. Input creation and running the code

• FARM uses XML file as input
• One example is in

FARM / training031822 / FARM_para_SES.xml
• We will focus on some key entries.

3.5. Random number generator for input 
variables creation

3.4. Prediction time horizon, and 
operational constraints;

3.3. Input and output variables for FARM;

3.2. FARM external model name;

3.1. An XML file containing the state-space 
representation matrices;



3. Input creation and running the code

• 3.1. An XML file containing the state-space representation matrices
• A state-space matrix set [A,B,C,D] is required to describe the system.
• Can be generated through RAVEN DMDc*.
• One example is available at 

FARM / training031822 / Para_DMDC_SES_1e_p1.xml

State-space model
𝑥 𝑘 + 1 = 𝐴𝑥 𝑘 + 𝐵𝑣 𝑘
𝑦 𝑘 = 𝐶𝑥 𝑘 + 𝐷𝑣 𝑘

Input 
𝑣 ∈ ℝ!

State x ∈ ℝ"

Output
𝑦 ∈ ℝ#

RAVEN DMDc

*For more details, please refer to RAVEN user manual Section 15.3.11, DMDc

1 Input 2 Outputs 1 State



3. Input creation and running the code

• 3.2. FARM external model name;
• To use FARM, “FARM.RefGov_parameterized_SIMO” need to be specified as the external 

model.
• Source code* is available at 

FARM / src / RefGov_parameterized_SIMO.py

• 3.3. Input and output variables for FARM;
• Input: “PwrSet”, the power setpoint before any adjustment;

• “PwrSet” should share the same unit as the actuator signal in DMDc training data;
• Output: “V”, adjusted power setpoint; “V_min” and “V_max”, the min & max allowed V value.

• 3.4. “MOASsteps” for the prediction time horizon; 
• MOASsteps = Time Horizon

Matrices interval
• Example:

• To predict the response for 1 hour;

• Matrices are in 10s interval
• MOASsteps = 3600s / 10s = 360.

*For more details, please refer to FARM user manual Section 1.1



3. Input creation and running the code

• 3.4. “Min/Max_Target*” for the operational constraints;
• “Min_Targeti” and “Max_Targeti” defines the bounds for the ith system output yi.
• Example:
• In training data, y1 is Electric Power (W), y2 is Firing Temperature (℃)
• Then in the FARM input file,

• Min_Target1=20.0E6, Max_Target1=50.0E6 à 20.0MW < Electric Power < 50.0MW
• Min_Target2=1270.0, Max_Target2=1410.0 à 1270℃ < Firing Temperature < 1410℃

• Mind the units.

Input 
“PwrSet”

Output
V, V_min, V_max

Reference Governor

Matrix File

Prediction time horizon
“MOASsteps”

Operational Constraints
“Min/Max_Target*”

FARMRAVEN

• The structure of entire FARM Plugin:



3. Input creation and running the code

• The FARM input file can be executed like other RAVEN input files:
haoyuwang@p075722 MINGW64 /d/GitProjects/training/FARM (master)

$ ../raven/raven_framework training031822/FARM_para_SES.xml



4. Output analysis

• The FARM output can be found in:
• FARM / training031822 / DMDc_FARM_Folder / RefGovOutput.csv

• 20 entries, with 4 column in each entry
• Issued power setpoint “PwrSet”;
• Adjusted power setpoint “V”;
• Minimum allowed value “V_min”;
• Maximum allowed value “V_max”;

• The “PwrSet” are regulated to “V”, to 
meet both explicit and implicit 
constraints.



5. Future Directions

• FARM is being implemented into HERON to help with power dispatch 
problem. [1]

• Online system identification and matrices update (ETA: April 2022)
• User do not need to generate matrices off-line;
• Online data-driven derivation and update of A,B,C,D matrices;
• Better supports the physics-based high-fidelity model.

References
[1] Wang, Haoyu, Roberto Ponciroli, and Richard B. Vilim. Automation of FARM from 
Alpha Phase to Beta Phase. No. ANL/NSE-22/6. Argonne National Lab.(ANL), Argonne, 
IL (United States), 2022.



Haoyu Wang
Argonne National Laboratory
haoyuwang@anl.gov

Thank you!


