

HYBRID Overview

FORCE Workshop March 17, 2022 INL/MIS-22-66355 Rev:00 Presented by: Dr. Konor Frick Prepared by: Dr. Konor Frick

LWRS

LIGHT WATER REACTOR SUSTAINABILITY

which is the second of the second second

FORCE

Capabilities

- Portfolio optimization
- Dispatch optimization
- Process model simulation
- Control simulation
- Economic analysis
- Supervisory control
- Stochastic analysis
- Workflow automation
- Validation and verification
- Digital twinning

FORCE

<u>HERON</u>

- Portfolio optimization
- Dispatch optimization
- Stochastic analysis
- Workflow automation
- Economic analysis
 - Multiyear, Multi-history

<u>HYBRID</u>

- Process model simulation
 - Steady state
 - Transient
- Control simulation
- Economic analysis
 - (Component-level daily/weekly optimization)
- Supervisory control (system-level)
- Validation and verification
- Digital twinning

HYBRID – What is it?

- HYBRID is a collection of physical models written in the Modelica language and Aspen HYSYS to characterize:
 - Ramp speed
 - Thermal and electrical integration of different processes
 - Creation of novel control schemes
 - Off-demand system dynamics
 - Safety limitations based on control systems
 - Costing functions
- Adaptable
 - Object-oriented, with standardized connections
 - The FMI/FMU standard can be used to accomplish external collaboration without necessitating the transfer of sensitive proprietary data or the recoding of models
 - Components can be "hot swapped" within code
 - Modelica was originally developed as the automotive industry's language of choice for quick interchangeability: drive shafts, engines, transmissions, electronics, etc.
- It was developed using the commercial platform Dymola from Dassault Systems.

Design Capability

- Physical models are based around process systems
 - A few coupled subsystems (nuclear plant + gas turbine + thermal storage + grid + ancillary process)
 - Not a regional grid area consisting of hundreds of power plants with regional transmission lines
- Figures of merit
 - Demand missed
 - System stability
 - System pressure, temperature, thermal gradients, valve positioning, etc.
 - Control strategy effects on each subsystem

Interconnectability

- Creation of dynamic process models capable of modeling full plant dynamics under normal operating conditions within an object-oriented platform capable of quickly coupling with other dynamic process models within the same platform, or via FMI/FMUs.
- Models are configured using interchangeable base classes for ease of use and the adaptability of models into different configurations.
- Can be exported in the FMI/FMU standard to allow robust interoperability with industry.

Inputs

- System sizing
 - Values taken from FORCE technoeconomic optimization workflow
 - Size Parameter available in top level of each system
- Thermal and electrical demands for each subsystem through time.
 - This can be input manually
 - Can also be automatically coupled with the HERON workflow to provide dispatch points for each subsystem.
- Desired control strategies
 - Each subsystem has its own control strategy
- Coupling methodologies
 - Supervisory control
 - Minimum electrical and heat rates for each subsystem

Example Thermal Coupling Points

Key Outputs

- Transient results of processes
- Coupling and interaction phenomena
- Missed demand
- Ramp limitations based on underlying system physics (phase change, thermal time constants, valve opening speeds)
- Test platform for novel control strategies

Example: Multi-Component Integrated Energy System

- Multi-component integrated energy system
- Power source = pressurized-water reactor
- Ancillary process = hydrogen production
- Energy storage = thermal energy storage
- Secondary energy source = natural gas-fired turbine

Case

- Operating in a microgrid with wind power
- Total microgrid power needs = 1200 MWe

Net Demand

Reactor Dispatch

Current Status of the HYBRID Repository

- **Opensource on GitHub**
 - https://github.com/idaholab/HYBRID
- In use by university partners
 - North Carolina State, Toledo, Michigan
- Automatic regression system implemented using the RAVEN-based ROOK system
- Recent additions
 - Concrete energy storage
 - Phase change material energy storage
 - High-fidelity balance of plant
 - Compressed air energy storage
 - High-temperature gas-cooled reactor

Subsystems within the HYBRID Repository

Identifier	Category	Description	Specific Example
1	Primary heat system (PHS)	Provides base load heat and power	Nuclear reactor
2	Energy manifold (EM)	Distributes thermal energy between subsystems	Steam distribution
3	Balance of plant (BOP)	Serves as the primary electricity supply from energy not used in other subsystems	Turbine and condenser
4	Industrial process (IP)	Generates high-value product(s) using heat from the energy manifold/secondary energy supply and electricity from the switch yard	Steam electrolysis, gas to liquids, or reverse osmosis desalination
5	Energy storage (ES)	Serves as an energy buffer to increase overall system robustness	Batteries, two-tank sensible heat storage, thermocline packed bed, concrete, phase change material
6	Secondary energy source (SES)	Delivers small amounts of topping heat required by industrial processes or rapid dynamics in grid demand that cannot be met by the	Gas turbine, hydrogen turbine
7	Switch yard (SY)	remainder of the system Distributes electricity between subsystems, including the grid	Electricity distribution
8	Electrical grid (EG)	Sets the behavior of the grid connected to the NHES	Large grid behavior (not influenced by NHES)
9	Control system center (CS)	Provides proper system control, test scenarios, etc.	Control/supervisory systems and event drivers

Extensible Plug-and-Play Approach

- The individual Modelica models can be exported using the FMI/FMU standard and then reconnected within an FMI importing environment.
- Using a standardized templating system, interconnection of external models with Modelica models can be accomplished while preserving internal physics and protecting proprietary information.
- Through the use of FMI/FMUs, trained RAVEN AI can be interconnected with existing physical Modelica models.

Future HYBRID Training

- Full Day on HYBRID Transient Modeling Capabilities March 24th
 - Three Modules
 - Introduction to Modelica and HYBRID
 - Basics of Modelica
 - How to use the GUI
 - HYBRID Repository Tour
 - Model Development
 - Building a model
 - Modifying existing models
 - How to implement control schemes
 - HYBRID For Analysts
 - Navigating HYBRID
 - How to connect existing models and use for analysis
 - FMI/FMU

Thank you for your attention

In-Depth Models

Transient NuScale-style Model in the Modelica Language

PHS – Westinghouse (WH) Style: 4-Loop PWR

Energy Manifold

ES – Sensible Thermal Energy Storage (TES)

High-Temperature Steam Electrolysis (HTSE)

HTSE 2-Hour Simulation

Reverse Osmosis Desalination

Reverse Osmosis 400-Second Run

Natural Gas-Fired Turbine

60-Second Dynamics

Simulation Capabilities/Limitations

Subsystem		Simulation (All simulation times using Dymola 2018. New CPU numbers have not been run with Dymola 2020.)				
Category	Model	Settling time (min)	Stop time (s) [interval length (s)]	CPU time (s)	CPU time/ stop time	
PHS	SMR – NuScale Style	<15	100 [1]			
	WH-style 4-Loop PWR	<60	10,000 [1]	33.31	0.0033	
EM	Steam manifold	<60	100 [1]	0.623	0.0032	
BOP	Ideal steam turbine	<60	100 [1]	0.06	0.0006	
IP	HTSE	<45	3,600 [1]	11.48	0.0032	
	RO desalination	<30	400 [1]	6.66	0.0166	
ES	Battery	<60	100 [1]	0.006	0.00006	
	Sensible TES	5–10	93,600 [1]	57.07	0.00061	
SES	GTPP	1–5	600 [1]	0.067	0.00011	
IES	FY17 example: WH + HTSE + Battery + GTPP	-	352,800 [10]	5,886	0.0167	
	FY18 example: WH PWR + HTSE + Battery + GTPP	-	86,400 [10]	213	0.0025	

Available Literature on Models

- Literature:
 - 1) <u>https://www.osti.gov/biblio/1569288-status-report-nuscale-module-developed-modelica-framework</u>. -- Frick, Konor L. Status Report on the NuScale Module Developed in the Modelica Framework. United States: N. p., 2019. Web. doi:10.2172/1569288.
 - <u>https://www.osti.gov/biblio/1333156-status-component-models-developed-modelica-framework-high-temperature-steam-electrolysis-plant-gas-turbine-power-plant</u> -- Suk Kim, Jong, McKellar, Michael, Bragg-Sitton, Shannon M., and Boardman, Richard D. Status on the Component Models Developed in the Modelica Framework: High-Temperature Steam Electrolysis Plant & Gas Turbine Power Plant. United States: N. p., 2016. Web. doi:10.2172/1333156.
 - <u>https://www.osti.gov/biblio/1468648-status-report-component-models-developed-modelica-framework-reverse-osmosis-desalination-plant-thermal-energy-storage</u> --Kim, Jong Suk, and Frick, Konor. Status Report on the Component Models Developed in the Modelica Framework: Reverse Osmosis Desalination Plant & Thermal Energy Storage. United States: N. p., 2018. Web. doi:10.2172/1468648.
 - 4) <u>https://www.osti.gov/biblio/1333156-status-component-models-developed-modelica-framework-high-temperature-steam-electrolysis-plant-gas-turbine-power-plant</u> -- Suk Kim, Jong, McKellar, Michael, Bragg-Sitton, Shannon M., and Boardman, Richard D. Status on the Component Models Developed in the Modelica Framework: High-Temperature Steam Electrolysis Plant & Gas Turbine Power Plant. United States: N. p., 2016. Web. doi:10.2172/1333156
 - 5) <u>https://www.osti.gov/biblio/1557660-design-operation-sensible-heat-peaking-unit-small-modular-reactors</u> -- Frick, Konor, Doster, Joseph Michael, and Bragg-Sitton, Shannon. Design and Operation of a Sensible Heat Peaking Unit for Small Modular Reactors. United States: N. p., 2018. Web. doi:10.1080/00295450.2018.1491181.
 - 6) <u>https://www.osti.gov/biblio/1557661-thermal-energy-storage-configurations-small-modular-reactor-load-shedding</u> -- Frick, Konor, Misenheimer, Corey T., Doster, J. Michael, Terry, Stephen D., and Bragg-Sitton, Shannon. Thermal Energy Storage Configurations for Small Modular Reactor Load Shedding. United States: N. p., 2018. Web. doi:10.1080/00295450.2017.1420945.
 - 7) <u>https://www.osti.gov/biblio/1562960-dynamic-performance-analysis-high-temperature-steam-electrolysis-plant-integrated-within-nuclear-renewable-hybridenergy-systems</u> -- Kim, Jong Suk, Boardman, Richard D., and Bragg-Sitton, Shannon M. Dynamic performance analysis of a high-temperature steam electrolysis plant integrated within nuclear-renewable hybrid energy systems. United Kingdom: N. p., 2018. Web. doi:10.1016/j.apenergy.2018.07.060.
 - <u>https://www.osti.gov/biblio/1357452-modeling-control-dynamic-performance-analysis-reverse-osmosis-desalination-plant-integrated-within-hybrid-energy-systems</u>. Kim, Jong Suk, Chen, Jun, and Garcia, Humberto E. Modeling, control, and dynamic performance analysis of a reverse osmosis desalination plant integrated within hybrid energy systems. United States: N. p., 2016. Web. doi:10.1016/j.energy.2016.05.050.