

Resilience for IES

FORCE Overview and Training April 4-6, 2023 Bikash Poudel Tyler Phillips

with which is not the second of the second second

Overview

- What is resilience?
- Introduce resilience metric
 - Power system specific
- Metric results visualization
 - Hydro assets, solar & storage
- Resilience of integrated energy system
- Resilience metric calculation for IES assets
- Resilience-informed planning and operation

What is Resilience?

- There is no accepted definition of resilience
- General commonality among all definitions
 - Ability to anticipate a possible disaster
 - Adopt effective measures to reduce losses or failures
 - Restore quickly
 - 5 Rs of resilience

Resilience Metric Introduction

- Reliability metrics often consider number and/or length of outages
 - Looking back in time
 - Want a metric looking forward in time
- Measure of the ability of a system to maintain frequency and voltage stability during a disturbance
- Frequency stability
 - Balance of real power
 - Unbalance leads to frequency change
- Voltage stability
 - Balance of reactive power
- Metric based on assets adaptive capacity
 - Control flexibility of the system in terms of real and reactive power
 - Operating point and nameplate capacity
 - Temporal constraints
 - Control latency and ramp rates

Resilience Metric Calculation

- Apparent power limit
 - $S(\theta) = \sqrt{P^2 + Q^2}$

Adaptive Capacity Result

- Adaptive capacity at all power factor angles
 - Assets can be aggregated to define the system
- Surface represents the maximum extent the system can be controlled
 - From its current operation point
- Size of disturbance that can be withstood

Integrated Energy Systems

Hydro Power Adaptive Capacity

Solar PV and Battery Storage with Uncertainty

Solar forecast with uncertainty

Resilience of Integrated Energy Systems

- IES components and resources with diverse flexibility profiles
 - Nuclear resources (Small Modular Reactors or Microreactors)
 - Flexible Heating/ Industrial process
 - Critical and non-critical loads
 - Thermal energy storage (TES)
 - Battery energy storage (BES)
 - Wind and PVs (source of disturbance)

Hierarchical Control for Resilient Operation

- Hierarchical distributed control of flexible assets.
- Coarse-load shaping (CLS)
 - Reactor power maneuvering to provide coarse-load shaping.
 - Limited to 2-3 times a day.
- Load-following (LF) control
 - Flexible steam extraction to provide load following
 - More frequently than reactor control.
- Frequency control
 - Battery energy storage (BES) to provide frequency control
 - Steam bypass support battery energy storage, if the disturbance is too large.

Time of day (h)

Adaptive Capacity Calculation of IES Assets

Case Study: Evaluating Resilience Metric

- The adaptive capacity of individual assets are aggregated to evaluate the net system adaptive capacity plotted in a logarithmic time scale.
- The response area metric (*RAM*) is calculated as:

$$RAM = \frac{Area under the adaptive capacity curve}{Total duration} = \frac{\int_{0}^{t_{FF}} P_{ad}MW dt}{t_{FF}} MWe-s/s$$

Integrated Energy Systems

Implementation for Resilience-Informed Planning and Operation

- Phase 1: Implementing resilience into FORCE
 - Resilience-informed sizing and dispatch optimization in HERON
 - Resilience-informed control in HYBRID
- Phase 2: Integrating grid components to IES Resilience
- Phase 3: Extending the resilience framework for thermal and industrial resources

Discussion and Questions??

Thank You!!

https://ies.inl.gov