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Overview

 \What is resilience?

* Introduce resilience metric
* Power system specific

* Metric results visualization
» Hydro assets, solar & storage

* Resilience of integrated energy system
* Resilience metric calculation for IES assets
* Resilience-informed planning and operation
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What is Resilience?

* There is no accepted definition of resilience

» General commonality among all definitions
 Ability to anticipate a possible disaster
« Adopt effective measures to reduce losses or failures
» Restore quickly
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Resilience Metric Introduction

* Reliability metrics often consider number and/or length of outages
* Looking back in time
« Want a metric looking forward in time

« Measure of the ability of a system to maintain frequency and voltage
stability during a disturbance

* Frequency stability
« Balance of real power
* Unbalance leads to frequency change

* Voltage stability
- Balance of reactive power

* Metric based on assets adaptive capacity
 Control flexibility of the system in terms of real and reactive power
» Operating point and nameplate capacity

* Temporal constraints
» Control latency and ramp rates
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Resilience Metric Calculation

* Apparent power limit
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Adaptive Capacity Result
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» Adaptive capacity at
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Hydro Power Adaptive Capacity
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Solar PV and Battery Storage with Uncertainty

 Solar forecast with uncertainty
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Resilience of Integrated Energy Systems

* |ES components and resources
with diverse flexibility profiles

* Nuclear resources (Small Modular
Reactors or Microreactors)

* Flexible Heating/ Industrial process F
» Critical and non-critical loads

* Thermal energy storage (TES)

- Battery energy storage (BES)

* Wind and PVs (source of
disturbance)
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Hierarchical Control for Resilient Operation

* Hierarchical distributed control of flexible
assets.

» Coarse-load shaping (CLS)

» Reactor power maneuvering to provide
coarse-load shaping.

 Limited to 2-3 times a day.
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» Load-following (LF) control g
» Flexible steam extraction to provide load
following g)

« More frequently than reactor control.

* Frequency control

- Battery energy storage (BES) to provide
frequency control

« Steam bypass support battery energy
storage, if the disturbance is too large.
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Adaptive Capacity Calculation of IES Assets

Normal Operation

Compromised and Emergency Operations
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CO: Compromised Operation
EO: Emergency Operation
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Case Study: Evaluating Resilience Metric

Resist Response Recover
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« The adaptive capacity of individual assets are aggregated to evaluate the net
system adaptive capacity plotted in a logarithmic time scale.

* The response area metric (RAM) is calculated as:

t
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Implementation for Resilience-Informed Planning and

Operation

* Phase 1: Implementing
resilience into FORCE

 Resilience-informed sizing and
dispatch optimization in HERON

* Resilience-informed control in
HYBRID

* Phase 2: Integrating grid
components to IES Resilience

* Phase 3: Extending the
resilience framework for
thermal and industrial
resources
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Discussion and Questions??

Thank You!!
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