

# Real-Time Optimization with ORCA

April 6, 2023

Jeren Browning, Linyu Lin, Takanori Kajihara, Junyung Kim, Paul Talbot



and a sold a line of the sold of the sold

### ORCA

#### Optimization of Real-Time Capacity Allocation

- Objective: at every time horizon, maximizing revenue in anticipation of system dynamics.
- Inputs: real-time measurements, market locational marginal prices.
- Outputs: optimal energy allocations.
- Modeling: linear optimization with reduced-order models.

#### • What does it help solve?

- Problem of optimal energy dispatch in integrated energy system.
- Problem of information exchanges between physical and virtual assets.
- Problem of data management, storage, and visualizations for complex systems with custom ontology



#### **RTO Components**





#### **Deep Lynx Data Warehouse**

- Open-source data warehouse software developed at INL
- Graph database governed by custom ontology
  - Data Integration Aggregated Model and Ontology (DIAMOND)
  - Data stored as nodes in the graph
  - Defined relationships represent how each node is associated with other nodes
  - Also allows for storing data as time-series tables, connected to nodes





#### **Deep Lynx Adapter**





#### **IES Real-Time Economic Optimization**

- IES optimization occurs at multiple time scales
  - "Real-Time" = days, hours, minutes, etc.
- Operation optimization of IES
  - Integration of IES with digital twin
    - RTO sits between M&S and operations
  - How do we operate optimally?
    - Maximize profits
    - Production scheduling
    - Arbitrage
- Why RTO?
  - \$\$\$



Fig. 1. Typical control hierarchy in process control. Krishnamoorthy et al. 2018



### **Optimization Workflow**

- Economic Model Predictive Control/Receding Horizon Optimization
  - Forecast LMP forward in time based on history.
  - Use reduced-order model to predict IES system dynamics (power plants + energy storage) and revenues.
  - Optimize dispatch for maximum revenue
  - Use dispatch for next time step only
  - t = t + 1, repeat
- Pyomo Python based open-source optimization modeling language
  - Reduced-order model calibrated by RAVEN
  - Linear optimization based on open-source solver glpk

When prices are high, predicting IES system dynamics and discharging energy storages for maximum revenue.



storages when prices are low



## **Optimization Initial Approach: Grey Box Model**

#### **Workflow in Digital Twin Framework Physical Systems** Modelica/DYMOLA Model **RAVEN Environment Pyomo Framework** torade Steam Generato PYOMO Steam Turbine Supervisory Control Reduced External Optimal RAVEN **Order Optimal** Grey Hydrogen generato Inputs Model Dispatch Box (ROM) Block Optimization Hydroger Storage Electrical Storage · ML algorithms applied to ROM · Physics-based system model A high-level python framework for nonlinear optimization algorithms Reduce time required to prototype new nonlinear programming algorithms Electricity Grid System State Update Many types of models: Black box – no information: only inputs $\rightarrow$ outputs

Grey box – some information: inputs → outputs, derivatives (Jacobians, Hessians, etc.)

Integrated Energy Systems

• White box – all information: inputs  $\rightarrow$  outputs, functional form, derivatives

### **Optimization Current Approach: State Space**

- Current approach
  - State space ROM:
    - $x_k = Ax_{k-1} + Bu_k$
    - $y_k = C x_k$

- x: states state of charge, etc. may not be directly measurable
- *u*: control things that can be manipulated/changed
- y: measurements directly measured, may be function of states (correlation to charge, different in physical system)

- Advantages:
  - Use matrices to build algebraic expressions in Pyomo
  - Very fast solution times
- Disadvantages:
  - Applicable to specific applications
  - Limited by training data and ROM creation process



#### **Current Work**

- Deep Lynx
  - Utility development for ORCA
- ORCA development
  - Non-linear programming
  - Automate construction workflow
  - Externalize HERON dispatch optimization tools
- Virtual/Physical Demonstration
  - Leverage model development from other work packages

| C ORCA                         | pandas append deprecated, replace with co |
|--------------------------------|-------------------------------------------|
| 🗅 notebooks                    | adding example Jupyter notebooks          |
| 🗅 tests                        | adding example Jupyter notebooks          |
| <ul><li>♦ .gitignore</li></ul> | adding unit test for Optimization         |
| M* README.md                   | updating README                           |
| 🖹 requirements.txt             | adding example Jupyter notebooks          |
| netup.py                       | adding example Jupyter notebooks          |
|                                |                                           |
| E README.md                    |                                           |
|                                |                                           |

#### ORCA

Optimization of Real-time Capacity Allocation

This Python package performs dispatch optimization for real-time economic optimization.



#### **Beyond FY23**

- Include additional considerations in optimization
  - Safety, reliability, FARM, operational constraints
- Expand ORCA
  - Expand with more optimization options
  - Integrate with other FORCE tools
- Demonstrations on other DETAIL or physical systems
  - HTSE
  - NRIC
  - SPHERE
  - Site Hydrogen facility
  - Other









#### **Timeseries Data Demo**



## Questions

