

Cost Estimation for Advanced Nuclear

FORCE Overview and Training April 4-6, 2023

Abdala Abou-Jaoude, Linyu Lin Advanced Reactor Technology Department, INL Abdalla.aboujaoude@inl.gov

INL/MIS-23-71827

and a state of the second state of the

Overview

- **Background**: IES program is focused on advanced reactor costs and technoeconomic evaluations, but limited consensus on what the cost of these systems will be. This effort is working towards providing initial estimates in short-term and more robust ones in longer term.
- Initial scope consists of literature survey of existing cost estimates for advanced reactors and providing preliminary recommendations that can be leveraged within FORCE evaluations.
- Findings will be published in upcoming INL public report (reach out if you want to be on the distribution when it comes out)
- Overview of presentation scope:
 - 1. High-Level Estimates (CAPEX in \$/kW, OPEX)
 - 2. Lower-Level Estimates (reactor components, more granularity)
 - 3. How to Use in FORCE simulation (example walkthrough)

Cost Estimation Literature Review - I

	PWR	'WR							
Ref	Reactor Concept	Learning	Units	Power	CAPEX	LCOE	OPEX		
[1]	NuScale iPWR	FOAK	12	1920MWth/570MWe	5600\$ ₂₀₁₅ /kW	114\$ ₂₀₁₅ /MW-hr			
[2]	NuScale iPWR	NOAK	12	685MWe	3856\$ ₂₀₁₈ /kW				
[3]	NuScale iPWR	NOAK	12	924MWe	2850\$ ₂₀₁₈ /kW				
[4]	SMART iPWR				5600\$ ₂₀₁₅ /kWe	105\$ ₂₀₁₅ /MW-hr	25\$ ₂₀₁₅ /M		
					2015	2010	W-hr		
[5]	NuScale SMR			1920-2400MWth/600-		51-54\$ ₂₀₁₉ /MW-hr			
				720MWe		112\$ ₂₀₁₆ /MW-hr [6]			
						101\$ ₂₀₁₆ /MW-hr [7]			
[8]	NuScale			600MWe		65\$ ₂₀₁₅ /MW-hr			
9]	SMR			570MWe		80\$/MW-hr			
[5]	BWRX-300			870MWth/300MWe		44–51\$ ₂₀₁₉ /MW-hr			
[10]	PWR-12	FOAK	1	3417MWth/1144MWe	6345\$ ₂₀₁₇ /kWe	- 72019			
[10]	PWR-12	NOAK	1	3417MWth/1144MWe	3650\$ ₂₀₁₇ /kWe				
10]	AP1000	FOAK	1	3417MWth/1144MWe	6671\$ ₂₀₁₇ /kWe				
10]	AP1000	NOAK	1	3415MWth/1100MWe	3838\$ ₂₀₁₇ /kWe				
11]	AP1000	FOAK	1	3415MWth/1100MWe	7349\$ ₂₀₂₂ /kWe	81\$ ₂₀₂₂ /MW-hr			
[12]	PWR	FOAK	1	3415MWth/1100MWe	6154\$ ₂₀₁₈ /kWe	0142022/			
L 2]	PWR	NOAK	1	3415MWth/1100MWe	6986\$ ₂₀₁₄ /kWe				
13]	PWR		2	2156 MWe	6041\$ ₂₀₁₉ /KWe				
5]	PWR		2	2256MWe	6317\$ ₂₀₁₉ /KWe	82\$ ₂₀₁₉ / MW-hr	25\$ ₂₀₁₉ /		
							MW-hr		
[14]	PWR					141-221\$/MW-hr	19- 21\$/MW-		
							hr		
[15]	PWR12BE	NOAK	1	3417MWth/1144MWe	4012\$ ₂₀₁₁ /kWe				
[15]	PWR12ME	FOAK	1	3417MWth/1144Mwe	5305\$ ₂₀₁₁ /kWe				
[15]	PWR		1	3417MWth/1144Mwe	2534\$ ₂₀₁₁ /kWe				

[1] S. Short and B. Schmitt, "Deployability of Small Modular Nuclear Reactors for Alberta Applications—Phase II," Pacific Northwest National Laboratory, Richland, WA, 2018.

[2] W. Stewart and K. Shirvan, "Capital cost estimation for advanced nuclear power plants," Renewable and Sustainable Energy Reviews, p. 111880, 2021.

[3] World Nuclear News, "NuScale announces SMR power uprate," World Nuclear News, 11 November 2020. [Online]. Available: https://www.world-nuclear-news.org/Articles/NuScale-announces-SMR-power-uprate#:%7E:text=The%20increase%20in%20generating%20capacity,about%20USD2850%2C%20the%20company%20said.

Integrated Energy Systems

[4] A. Foss, H. Bryan and P. Jeremiah, "Cost Assessment of Small and Micro Nuclear Reactors for Oil Sands Applications (INL/LTD-21-01565)," Idaho National Laboratory, Idaho Falls, ID, 2021.

[5] M. Weimar, A. Zbib, D. Todd, J. Buongiorno and K. Shirvan, "Techno-economic Assessment for Generation III+ Small Modular Reactor Deployments in the Pacific Northwest," Pacific Northwest National Laboratory, Richland, Washington, 2021.

[6] J. Surina, NuScale Power Plant Economics (Presentation), NuFab, Northwestern University: NuScale Power LLC, 2016.

[7] J. Surina and M. McGough, The NuScale Value Proposition (Presentation), NuScale Power LLC, 2015.

[8] Energy Strategies;, "Analyzing the Cost of Small Modular Reactors and Alternative Power Portfolios," Energy Strategies, Salt Lake City, UT, 2019.

[9] S. Kirshenberg, H. Jackler, J. Eun, B. Oakley and W. Goldenberg, "Small Modular Reactors, Adding to Resilience at Federal Facilities," Allegheny Science & Technology Corporation, Bridgeport, WV, 2017.

[10] W. Stewart, K. Shirvan, E. Velez and R. Wiser, "Pathways to Cost-effective Advanced Nuclear Technology," in Applied Energy Symposium MIT A+B, Cambridge, MA, 2020.

[11] National Renewable Energy Laboratory, "Electricity Annual Technology Baseline (ATB) Data Download," 19 Feburary 2023. [Online]. Available: https://atb.nrel.gov/electricity/2022/data.

[12] J. Buongiorno, J. Parsons, D. Petti and J. Parsons, "The future of nuclear energy in a carbon-constrained world," MIT, Cambridge, MA, 2019.

[13] U.S. Energy Information Administration, "Capital Cost and Performance Characteristic Estimates for Utility Scale Electric Power Generating Technologies," U.S. Energy Information Administration, 2020.

[14] LAZARD, "Lazard's Levelized Cost of Energy Analysis - Version 16.0," LAZARD, April 2023. [Online]. Available: https://www.lazard.com/research-insights/2023-levelized-cost-of-energyplus/. [Accessed 18 April 2023].

[15] D. Holcomb, F. Peretz and A. Qualls, "Advanced high temperature reactor systems and economic analysis," Argonne National Laboratory, 2011.

[16] A. Gandrik, B. Wallace, M. Patterson and P. Mills, "Assessment of high temperature gas cooled reactor capital and operating costs (TEV-1196)," Idaho National Laboratory, Idaho Falls, ID, 2012.

[17] W. Stewart, E. Velez, R. Wiser and K. Shirvan, "Economic solution for low carbon process heat: A horizontal, compact high temperature gas reactor," Applied Energy, p. 117650, 2021.

[18] X-Energy, "Advanced Reactor Demonstration Program," X-Energy, LLC, 2022. [Online]. Available: https://x-energy.com/ardp. [Accessed 27 Feburary 2023].

https://ies.inl.gov [20] Department

Cost Estimation Literature Review - II

	SFR					Microreactor								
Ref	Reactor Concept	Learning	Units	Power	CAPEX	LCOE	Ref	Reactor Concept	Learni ng	Unit s	Power	CAPEX	LCOE	ΟΡΕΧ
[12]	SFR		4	3360MWth/1100MWe	5632\$ ₂₀₁₃ /kWe	113\$ ₂₀₁₃ /MW-hr	[27]	Reference micro-reactor	FOAK	1	10MWth/5MWe	10000\$ ₂₀₁₉ /kWe	150\$ ₂₀₁₉ /MW-hr	69\$ ₂₀₁₉ /MW-hr
[21]	4S Sodium		1	30MWth		130-290\$ ₂₀₀₉ /MW-hr	[27]	Reference micro-reactor	FOAK	1	10MWth/5MWe	15000\$ ₂₀₁₉ /kWe	310\$ ₂₀₁₉ /MW-hr	103\$ ₂₀₁₉ /MW-hr
[22]	LSPB		1	1100MWe	4734\$ ₂₀₁₃ /kWe		[27]	Reference micro-reactor	TUAK	1	TOIMINATIL'E	13000\$ ₂₀₁₉ /KWe	510,2019/10100-111	
[23]	ABR1000		1	380MWe	5613\$ ₂₀₁₇ /kWe		[27]	Reference micro-reactor	FOAK	1	10MWth/5MWe	20000\$ ₂₀₁₉ /kWe	410\$ ₂₀₁₉ /MW-hr	137\$ ₂₀₁₉ /MW-hr
[24]	S-PRISM		4	1520MWe	2664\$ ₂₀₀₅ /kWe	39\$ ₂₀₀₅ /MW-hr	[27]	Reference micro-reactor	NOAK	1	10MWth/5MWe	3996\$ ₂₀₁₉ /kWe	80\$ ₂₀₁₉ /MW-hr	
[24]	S-PRISM		4	1520MWe	3046\$ ₂₀₀₅ /kWe	60\$ ₂₀₀₅ /MW-hr	[27]	Reference micro-reactor	NOAK	1	TOMMANULADIANAG	39909 ₂₀₁₉ / KWE	809 ₂₀₁₉ /10100-111	
[25]	S-PRISM		2	1651MWe	1335\$ ₁₉₉₆ /kW	32\$ ₁₉₉₆ /MW-hr	[27]	Reference micro-reactor	NOAK	1	10MWth/5MWe	8276\$ ₂₀₁₉ /kWe	200\$ ₂₀₁₉ /MW-hr	
[24]	S-PRISM		6	1866MWe	2073\$ ₂₀₀₅ /kWe	39\$ ₂₀₀₅ /MW-hr	[07]	Defense mine mester	NOAK	1	100 00 00 00 00 00 00 00 00 00 00 00 00	140726 /////	2400 / 1041 hr	
	Mod B						[27]	Reference micro-reactor	NOAK	T	10MWth/5MWe	14973\$ ₂₀₁₉ /kWe	340\$ ₂₀₁₉ /MW-hr	
[24]	S-PRISM		6	1866MWe	2371\$ ₂₀₀₅ /kWe	55\$ ₂₀₀₅ /MW-hr	[28]	Design A	FOAK	1	5MWth/1.8MWe	65445\$ ₂₀₁₇ /kWe	2174\$ ₂₀₁₇ /MW-hr	
	Mod B						[28]	Design A'	FOAK	1	8MWth/2.9MWe	19241\$ ₂₀₁₇ /kWe	363\$ ₂₀₁₇ /MW-hr	122\$ ₂₀₁₇ /MW-hr
[20]	LSPB	NOAK		1311Mwe	4241\$ ₂₀₁₇ /kWe	80\$ ₂₀₁₇ /MW-hr	[28]	Design A'	NOAK	1	8MWth/2.9MWe	6575\$ ₂₀₁₇ /kWe	135\$ ₂₀₁₇ /MW-hr	53\$ ₂₀₁₇ /MW-hr

MSR

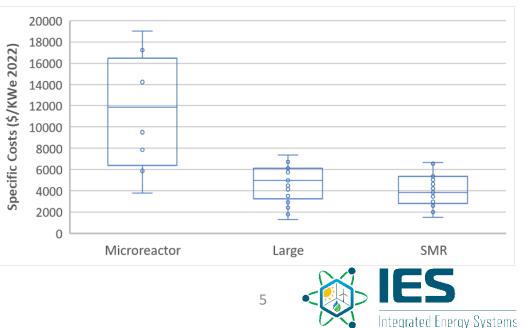
Ref	Reactor	Learning	Units	Power	CAPEX	LCOE	OPEX
	Concept						
[12]	AHTR		1	3000MWth/1350MWe	5217\$ ₂₀₁₁ /kWe	111\$ ₂₀₁₁ /MW-hr	
[12]	MSR		1	2275MWth/1000MWe	6113\$ ₂₀₁₁ /kWe	119\$ ₂₀₁₁ /MW-hr	
[12]	FHR		12	2904MWth/1330MWe	5423\$ ₂₀₁₅ /kWe	135\$ ₂₀₁₅ /MW-hr	
[26]	DMSR		1	1000MW	653\$ ₁₉₇₈ /kWe		
[15]	AHTR	NOAK	1	3400MWth/1530MWe	3384\$ ₂₀₁₁ /kWe		34-60\$ ₂₀₁₁ /MW- hr
[20]	MSR	NOAK		190-1000MWe	3664\$ ₂₀₁₇ /kWe	51\$ ₂₀₁₇ /MW-hr	

[21] V. Kuznetsov and A. Lokhov, "Current status, technical feasibility and economics of small nuclear reactors," Nuclear energy agency of the Organisation of economic cooperation and development, Paris, France, 2011.

- [22] F. Ganda, "Economic Evaluation of Promising Options (No. FCRD-FCO-2015-000013)," Argonne National Laboratory, Argonne, IL, 2015.
- [23] F. Ganda, T. Taiwo and T. Kim, "Report on the Update of Fuel Cycle Cost Algorithms (No. NTRD-FCO-2018-000439)," Argonne National Laboratory, Argonne, IL, 2018.
- [24] D. Shropshire, "Advanced fuel cycle economic tools algorithms, and methodologies (No. INL/EXT-09-15483)," Idaho National Laboratory, Idaho Falls, ID, 2009.
- [25] C. E. Boardman, "Economic assessment of S-PRISM including development and generating costs," ICONE, 2000.
- [26] J. Engel, H. Bauman, J. Dearing, W. Grimes, H. McCoy and W. Rhoades, "Conceptual design characteristics of a denatured molten-salt reactor with once-through fueling (No. ORNL/TM-7207)," Oak Ridge National Laboratory, Knoxville, TN, 1980.
- [27] M. Nichol and H. Desai, "Cost competitiveness of micro-reactors for remote markets," Nuclear Energy Institute (NEI), Washington, DC, 2019.
- [28] A. Abou-Jaoude, Y. Arafat, A. Foss and B. Dixon, "An Economics-by-Design Approach Applied to a Heat Pipe Microreactor Concept (No. INL/EXT-21-63067-Rev000)," Idaho National Lab.(INL), Idaho Falls, ID, 2021. 4

High-Level Estimates

- Recommendations for overnight and annualized costs provided in tables below: metadata evaluation of literature
- Note that these estimates for reactor Between first and nth of a kind (BOAK)
- Significant overlap in literature among different reactor types and large vs. SMR
- Recommend using the same reference values for either at this stage
- Separate recommendations for microreactors provided as well. But note that cost estimates studies limited to 2.


Large and SMR

	Low	Med	High	Sd
Overnight Costs	\$3,000 /kWe	\$4,500 /kWe	\$6,000 /kWe	\$1,500 /kWe
O&M Costs	\$15 /MWh	\$25 /MWh	\$35 /MWh	\$17 /MWh
LCOE (estimated)	\$45 /MWh	\$70 /MWh	\$95 /MWh	\$57 /MWh

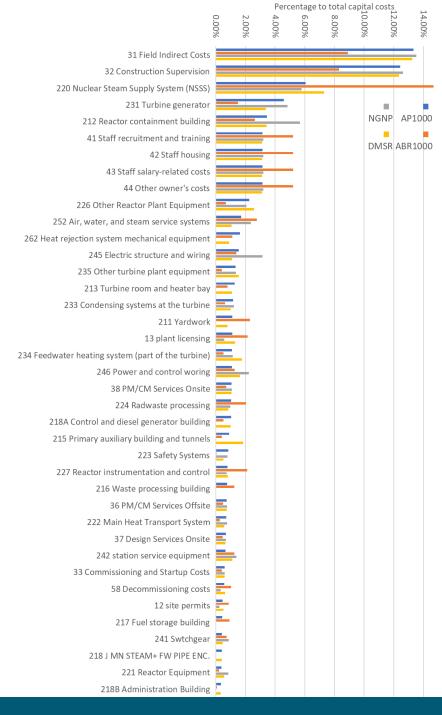
Microreactors

	Low	Med	High	Sd
Overnight Costs	\$8,000 /kWe	\$12,000 /kWe	\$16,000 /kWe	\$5,500 /kWe
O&M Costs	\$70 /MWh	\$100 /MWh	\$122 /MWh	\$30 /MWh
LCOE (estimated)	\$150 /MWh	\$300 /MWh	\$370 /MWh	\$110 /MWh

Lower-Level Detailed Estimates

- Reference reactors selected for each type:
 - Pressurized Water Reactor: PWR-12BE (reference)
 - Sodium Fast Reactor: ABR1000
 and LPBR
 - High-temperature Gas Reactor: NGNP
 - Molten Salt Reactor: DMSR
- Lower-level more estimates structured via the Generalized Nuclear Code of Account (GN-COA)
- Similar to Bill of Material (BOM)
- Provides structured and consistent way of comparing advanced reactor costs across different categories

10s				Project development	40s			Capitalized owner's costs
	11			Land and land rights		41,42,43		Operating staff recruitment, training etc.
	12 13			Site permits				
				Plant licensing	50s			Capitalized supplementary costs
	14, 15	, 16		Plant permits & studies		51		Shipping and transportation
	18			Community outreach & education			511	Reactor module shipping & transportation
							512	Fuel shipping
20s				Direct costs		53 <i>,</i> 54		Taxes & insurance
	21			Plant Structures		55		Initial fuel load
		211		Yardwork		58		Decommissioning costs
		212		Reactor containment			581	Reactor module decommissioning
		213		Building and utilities			582	Site decommissioning
			218T	Reactor startup facility			583	Spent fuel decommissioning
	22			Reactor system				
		221		Reactor components				
			221.12	Outer vessel structure	60s			Capitalized financial costs
			221.13	Inner vessel structure		61		Escalation (price inflation)
			221.21	Reactivity control system		62		Fees
			221.22	Reflector		63		Interest
			221.23	Shield				
			221.24	Moderator				
		222		Main heat transport	70s			Annualized O&M costs
			222.12	Reactor coolant system (heat pipes)		71		O&M staff
			222.13	Heat exchangers			711	On-site technicians and operators
		227		Instrumentation & control			712	Remote monitoring technicians
	23, 24	23, 24, 25		Turbine and electric systems			713	Security staff
							714	Maintenance
30s				Indirect services				
	31, 35	, 36, 37	7, 38	Field & factory Indirect support	80s			Annualized fuel costs
	32			Factory & construction supervision		81		Refueling operations
	33			Commissioning and startup		84		Additional nuclear fuel
	34			Demonstration test run				


Integrated Energy Systems

Example of GN-COA breakdown

Example Detailed Cost Estimates

- Showing breakdown of different cost contributors to each reactor types
- Generally in-line between reactors but there are some differences
- Report will contain large tables with detailed breakdown for FORCE users to leverage (e.g., excluding reference turbine costs)

			PWR	SFR	HTGR	MSR
22		22 Reactor Equipment	12.50%	20.61%	14.79%	14.51%
	220	220 Nuclear Steam Supply System (NSSS)	6.05%	14.69%	5.79%	7.30%
	221	221 Reactor Equipment	0.38%	0.22%	0.83%	0.56%
	222	222 Main Heat Transport System	0.69%	0.28%	0.77%	0.56%
	223	223 Safety Systems	0.84%	0.05%	0.77%	0.52%
	224	224 Radwaste processing	1.04%	2.04%	0.97%	0.83%
	225	225 Fuel Handling Systems	0.14%	0.14%	2.57%	0.84%
	226	226 Other Reactor Plant Equipment	2.26%	0.68%	2.07%	2.57%
	227	227 Reactor instrumentation and control	0.78%	2.10%	0.74%	0.82%
	228	228 Reactor plant miscellaneous items	0.31%	0.40%	0.28%	0.51%
23		23 Energy conversion system (Rankine)	8.76%	3.34%	9.13%	8.16%
	231	231 Turbine generator	4.58%	1.48%	4.84%	3.37%
	233	233 Condensing systems at the turbine	1.17%	0.63%	1.21%	0.99%
	234	234 Feedwater heating system (part of the turbine)	1.10%	0.51%	1.13%	1.75%
	235	235 Other turbine plant equipment	1.33%	0.40%	1.35%	1.53%
	236	236 Instrumentation and control	0.27%	0.14%	0.27%	0.17%
	237	Turbine plant miscellaneous items	0.32%	0.18%	0.33%	0.34%

16.00%

Additional Considerations

- Costs of reactors strongly depend on several factors beyond technology type
- Captured in study:
 - Learning rates: as more reactors are deployed
 - First of a Kind (FOAK) premium: e.g., if considering ongoing ARDP projects
 - **Multi-unit plants**: can pool facilities and staff between several reactors.
- Can apply these *cost adjustments* based on use case considered
 Expendutires [arbitrary scale]
- Not captured (future work?):
 - Modularization
 - Advanced construction
 - Seismic isolation
 - Etc.

I	NOAK =	og ₂ N								
	Learning F	Rates (LR)	5%	10%	15%					
	$FOAK = (BOAK) \times Premium$									
	FOAK p	remium	1.4	1.8	2.9					
		^K multi un EX _{1 unit} ulti unit	• × (#							
	Multi-unit Exponent		0.800	0.825	0.850					
	Multi-unit Multiplier		0.500	0.624	0.700					
Non-Recurring N.R.) deployment costs Generic design & licensing	N.R. Amortized Site Specific Standard portion of first commercial plant FOAK	N.R. Amortized Site Specific Second standard commercial plant 2OAK	N.R. Amortized	N.R. Amortizi Site Specific		idard rcial t				

Fully commercialized utility

< Research, Devt. & Demo. > < Copployment > +

< RD&D phase costs generally not included in cost of electricity

System R&D

Phase

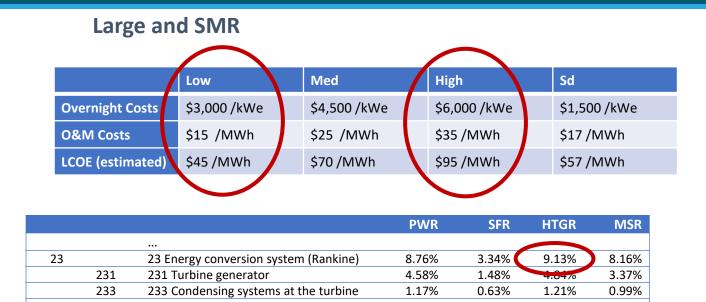
Prototype (Demo) Reactor (if necessary)

POAK

https://ies.inl.gov

Example Use Case: HTGR with only heat

• FORCE Model Scenario: A gas-cooled reactor plant producing heat (no electricity) for various industrial applications


NGNP HTGR Concept

茶茶茶茶茶茶茶茶茶茶茶

- Assumptions:
 - Neither FOAK nor NOAK: BOAK estimates
 - No detailed specifications on HTGR design
 - No need for turbine and corresponding systems
 - Sensitivity on cost range
 - Assuming 4 reactors per plant
 - Assess cost impact of follow-up projects

Example Walkthrough

- High Level Estimate
 Pick CAPEX and OPEX range
 to consider
- 2. Lower-Level Corrections
 ➢ Remove accounts 23: 'Energy Conversion System'
- 3. Learning Adjustments
 - Pick multi-unit correction factors
 - Pick learning rate range
- 4. Plug Additional Cost Models
 >HTSE plant? Water desal plant? Thermal storage? Etc.

•••

Summary & Future Work

- Literature review conducted to provide:
 - High-level \$/kW & \$/MWh cost estimates for FORCE evaluations
 - Lower-level detailed cost breakdown for main reactor types
 - Adjustment factor based on learning, etc.
- Potential Future Improvements of the cost databas:
 - Gaussian distribution for data? → RAVEN?
 - Uncertainty quantification and evaluation of contributors? → RAVEN?
 - More bottom-up cost estimates? → Subcontract
 - Recommended values instead of aggregate data ? \rightarrow DOE-NE discussions
 - Advisory board to review reference costs? \rightarrow DOE-NE discussions

Idaho National Laboratory

WWW.INL.GOV