
Introduction to Electricity Markets

FORCE Overview and Training April 4-6, 2023 Jason Hansen
Sr Research Economist
Integrated Energy and Market Analysis

jason.hansen@inl.gov

Economic Considerations in The Electricity System

Source: (NEED, 2020)

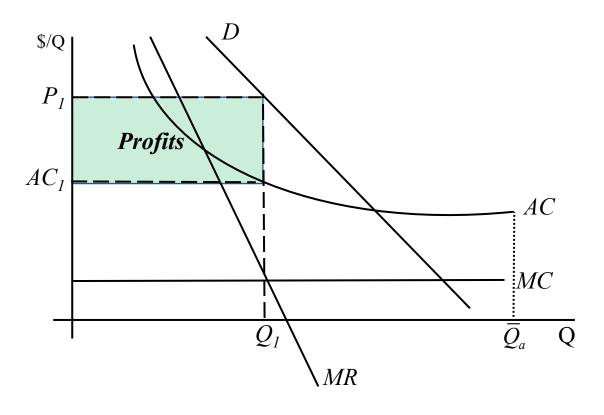
- Technical and economic considerations (i.e., exchange) along the supply chain
- Organizational structure matters: Regulated vs De-regulated

Outline

- The Electricity System
 - Deregulated vs Regulated
 - Wholesale vs Retail
- Wholesale Electricity Markets (ISOs/RTOs)
 - Two settlement system
 - Ancillary Services
 - Capacity Markets
- Competitive Position of Nuclear Industry
 - Competition in the energy portfolio mix
 - Impacts of recent legislation
 - Operating in the economic environment

Restructuring

- Vertically integrated, regulated electric utilities prior to 1990
- This meant rate of return regulation of natural monopolies
- Early 1990s states deregulate electricity systems, create competition, lower costs
- Required electric utilities to sell generation assets, independent power producers
- Electric utilities retained ownership of transmission and distribution infrastructure
- Power producers suppliers, load-serving entities demanders
- Regulated then central, integrated resource planning. Deregulated, market forces. Financial risk transferred from end-use consumers to suppliers.

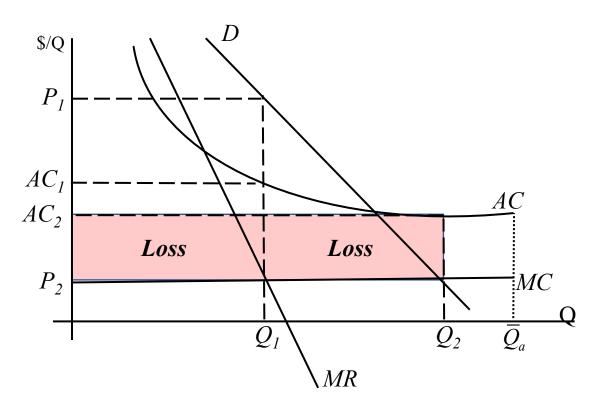

The Vertically Integrated Regulated Utility

- Single owner/operator structure of energy system means monopoly
 - one type of market failure
 - natural monopoly large fixed costs
 - regulation to correct failure
- Rate of Return regulation

•
$$\sum_{i=1}^{n} p_i q_i = \text{Expenses} + sB$$

- s = return on capital, B = investment expenses, rate base
- Subject to perverse incentives

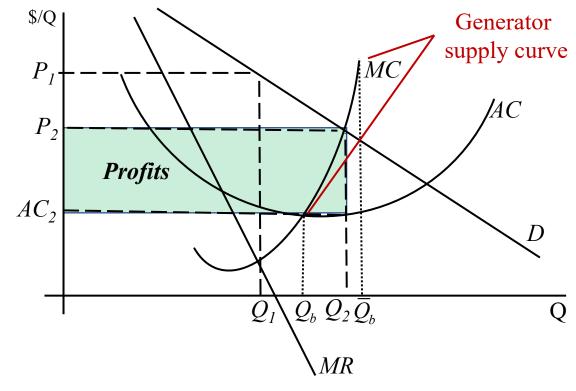
Stylized Generator Cost Structure



Generators with large fixed cost and low or constant marginal cost

- Generators bid their short run marginal cost
 - promise to provide Q capacity at P price at some time interval
- Bid covers variable costs but not fixed cost – "missing money problem"
- The scale of the missing money problem depends on the nature of generator cost structure (fixed costs)

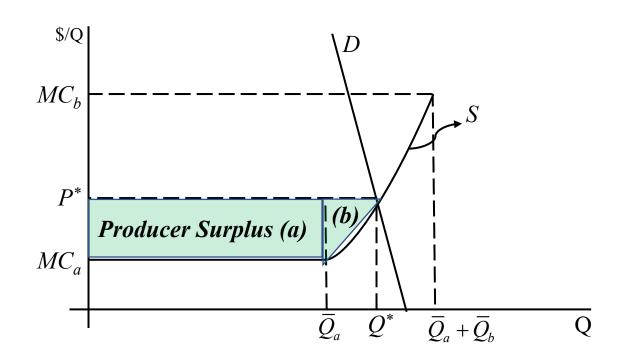
Stylized Generator Cost Structure



Generators with low fixed costs and increasing marginal cost

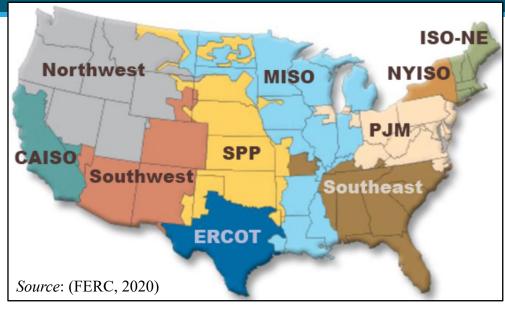
- Bids for generators with increasing marginal costs cover variable and fixed costs
- Generator supply curve is the marginal cost curve above average *variable* cost
- If generators can't cover variable cost in short run then shut down

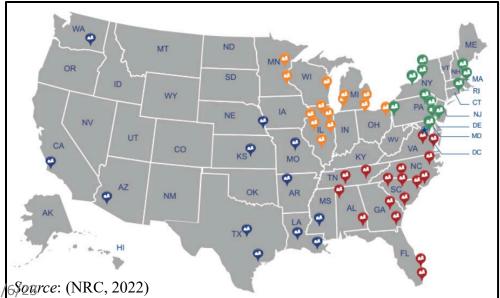
Stylized Generator Cost Structure



Developing the Bid Curve

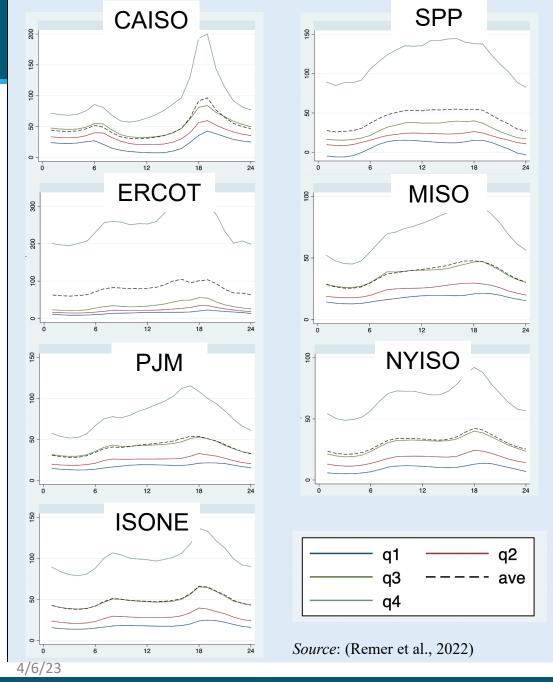
- Market supply curve is the sum of the marginal cost curve across all generators in the market ("the stack")
- "marginal generator" is that for whom marginal cost intersects demand – "clearing price" P*
- Dynamics of:
 - Production tax credit
 - Changing prices for natural gas
 - Carbon tax
- Note:


Profits = Producer Surplus – Fixed Cost


Stylized Market Model

US Wholesale Electricity Markets and Nuclear Plants

- In Northwest, Southwest, and Southeast, utilities operate in regulated markets
- In restructured markets, competitive market model used to allocate resources to:
 - Balance load
 - 2 settlement system
 - Regulation services
 - Expand capacity



Electricity Markets by Market Size

ISO/RTO	Energy (\$B)	Capacity (\$M)	Ancillary Services (\$M)
CAISO	10.6	N/A	189
ERCOT	13.4	N/A	603.5
ISO-NE	6.0	3,600	130.9
MISO	21	431	70.5
NYISO	6.38	1,800	491
PJM	29.61	11,000	654
SPP	7.5	N/A	76

Source: (Hansen and Rabiti, 2021)

Day-ahead Market

- Based on generator bids, DAM schedules generators to produce 24 hours out
- Based on forecasted demand
- Generators can clear some capacity in DAM and hold out additional capacity in RTM
- About 95% of capacity exchanged in DAM
- Prices called LMP (locational marginal price)
- LMPs distributed across the grid
- Remaining capacity settled in real-time market

Integrated Energy Systems

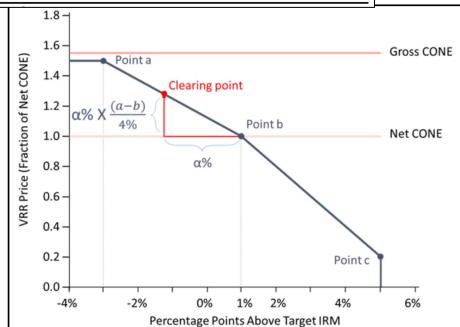
ISO/RTO	Spinning	Non-Spinning	Regulation	
CAISO	3.61	1.02	7.57	
	10-minute response	Immediate Response		
	Min run time 2 hours			
ERCO	12.12 4.50		8.5	
	Response within minutes			
	Min run time 4 hours	Min run time 1 hour	3 MW/min, up 4 MW/min down	
	2 MW/min, up	2 MW/min, up		
	3 MW/min, down			
ISO-NE	4.66	26.63	18.38	
	10-mintue response	10 to 30 minute	Immediate Response	
	1 MW/min up/down	response		
MISO	1.74	0.23	8.81	
	10-minute response	0-minute response 10-minute response		
NYISO	3.61	3.08	6.07	
	10-minute response	10 to 30-minute response	Immediate response, full response within 5 minutes	
PJM	3.17	8.11	13.47	
	10-minute response	10-minute response	Immediate response,	
			0.1 MW min response	
SPP	5.36	0.73	7.28	
	10-minute response	10-minute response	Immediate	

Source: (Hansen and Rabiti, 2021)

4/6/23

Ancillary Services

Regulation


- frequency control adjustments within fractions of a second
- Reactive power is the additional voltage needed to bring voltage and current into alignment and return to in phase power

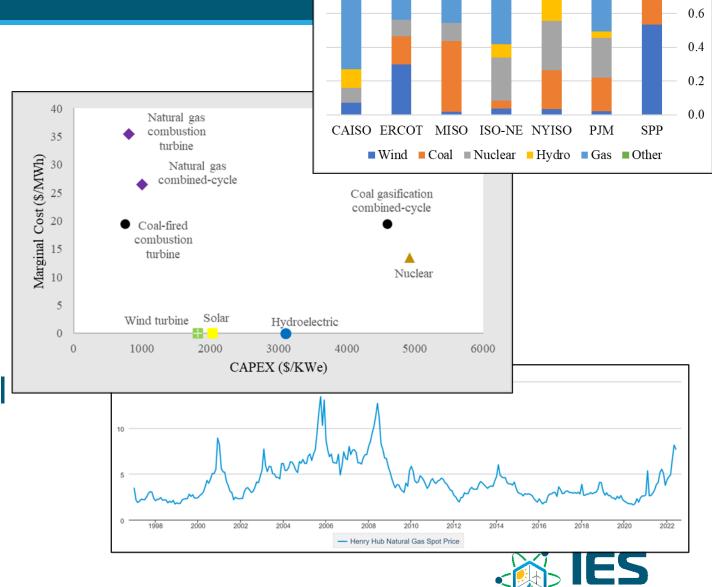
Reserves

- spinning and non-spinning adjustments within a few minutes
- Generators commit to being willing and able to adjust by committed capacity amount
- Paid capability price plus performance payment (electricity price from RTM)
- Grid operator uses reserves when regulation control is not enough to bring system back into alignment

Table 2 Capacity Market Summary				
ISO/RTO	Length of contracting period	Average Capacity Prices and CONE ^{1/}		
CAISO	1-year forward contract	Average Capacity Price: \$100/MW-hour CONE: \$208/MW-day		
ISO-NE	3-year forward contract	Average Capacity Price: \$9.63/MW-hour CONE: \$309.59/MW-day		
MISO	3-year forward contract	Average Capacity Price: \$1.27/MW-hour CONE: \$257.53/MW-day		
NYISO	30-day delivery contract	Average Capacity Price: \$5.04/MW-hour Net CONE: \$366.94/MW-day		
PJM	3-year forward contract	Average Capacity Price: \$7.17/MW-hour Net CONE: \$285.5/MW-day		
SPP	Incrementally as needed	Average Scarcity Price: \$439/MW-hour ^{2/} Average Make-whole Payment: \$0.22/MW-hour (DAM), \$18.94/MW-hour (RTM) ^{2/} CONE: \$234.55/MW-day		

Capacity Market

- Capacity markets are a way for power producers to generate revenue for providing electricity capacity to the energy grid.
- ISOs set a price-cap called the CONE (cost of new entrant)
- Net CONE reflects generator revenue need to make up for shortfall from electricity revenue, estimate of missing money
- Cost of new generating capacity must fall below the CONE to bid in the capacity market
- The ISO sets a capacity target then generators bid based on their net CONE



Source: (Blumsack, 2020; Hansen and Rabiti, 2021)

4/6/23

Competitive Position: Energy Mix

- Keep in mind technology competition
- Cost structure impacts market outcomes – fixed vs variable costs
- Average correlation in electricity prices and natural gas prices estimated at ~0.9!

Integrated Energy Systems

Source: (Remer et al., 2022)

Competitive Position: Inflation Reduction Act

- 45U Production tax credit for operating nuclear plants
 - Up to \$15/MWh
 - Adjusts for prices above \$25/MWh
 - Merchant and regulated plants
 - 2024 2032
- 45Y Clean electricity production credit
 - Up to \$30/MWh for 10 yrs
 - ITC or PTC, not both
 - Plants entering service 2025 or later
 - Adjustments available, energy communities, domestic content
- 48E Clean electricity investment tax credit
 - 30% of construction expense when plant enters service
 - ITC or PTC, not both
 - Plants entering service 2025 or later
 - Adjustments available, energy communities, domestic content

- 45Q CO2 capture and storage credit
 - Up to \$85/tCO2 captured with bonus
 - 12-year eligibility
 - Construction before 2032
 - Cannot stack credits with others
- 45V H2 production tax credit
 - Up to \$3/kg with 10-year eligibility
 - Construction before 2032
 - Stack with 45Y and 48E
 - Size of credit based on emission intensity
- Thoughts on H2 and IES applications
 - Additionality
 - Regionality
 - Time matching
 - Accounting for average vs marginal emissions

Competitive Position: Economic Conditions

Energy Industry	Cost of Equity	Share of Equity	Cost of Debt	Tax Rate	Share of Debt	WACC
Non-Renewable	4.84	51.38	3.0	0.0	48.62	4.21
Renewable	5.56	60.95	3.0	1.74	39.05	5.02
Utility	4.42	57.24	1.92	9.74	42.76	3.74

Source: (STERN, NYU)

- Inflation running at 40-year historic highs
- Rising interest rates, stock market volatility, . . . recession risk
- Lazard (2021) shows that a 1% change in WACC increases LCOE by ~8.4%

Summary

- Significant differences in modeling regulated utility versus restructured ("deregulated") utility
- Shape of (or assumptions on) marginal cost curve impacts firm profitability – large fixed costs vs large variable costs
- In restructured markets a competitive market model is used to allocate resources formerly accomplished by a single entity
- Markets for ancillary services and capacity provide additional value for utilities, although not as strong as electricity market
- The competitive position of the nuclear industry may be a point of consideration on modeling assumptions

References

- Blumsack, S. (2020). *Introduction to Electricity Markets*. Retrieved from https://www.e-education.psu.edu/ebf483/
- FERC. (2020). *Electric Power Markets*. Retrieved from https://www.ferc.gov/industries-data/market-assessments/electric-power-markets
- Hansen, J., & Rabiti, C. (2021). *Characterizing US Wholesale Electricity Markets*. Idaho Falls, ID: Idaho National Laboratory.
- Hytowitz, R. B., Ela, E., Kerr, C., & Bernhoft, S. (2020). *Economic Drivers for Nuclear Flexible Operations*. Retrieved from Palo Alto, CA:
- Lazard. (2021). Lazard's Levelized Cost of Energy Analysis -- Version 15.0. Retrieved from https://www.lazard.com/media/451905/lazards-levelized-cost-of-energy-version-150-vf.pdf
- NEED. (2020). *Electricity*. Retrieved from https://7ad3lz9zmyhppfq26wugt151-wpengine.netdna-ssl.com/Files/curriculum/infobook/Elecl.pdf
- Remer, S. J. (2022). Integrated Operations for Nuclear Business Operation Model Analysis and Industry Validation.
- STERN, NY. http://people.stern.nyu.edu/adamodar/New_Home_Page/datafile/wacc.htm
- Viscusi, W. K., Harrington Jr, J. E., & Vernon, J. M. (2005). Economics of regulation and antitrust: MIT press.

