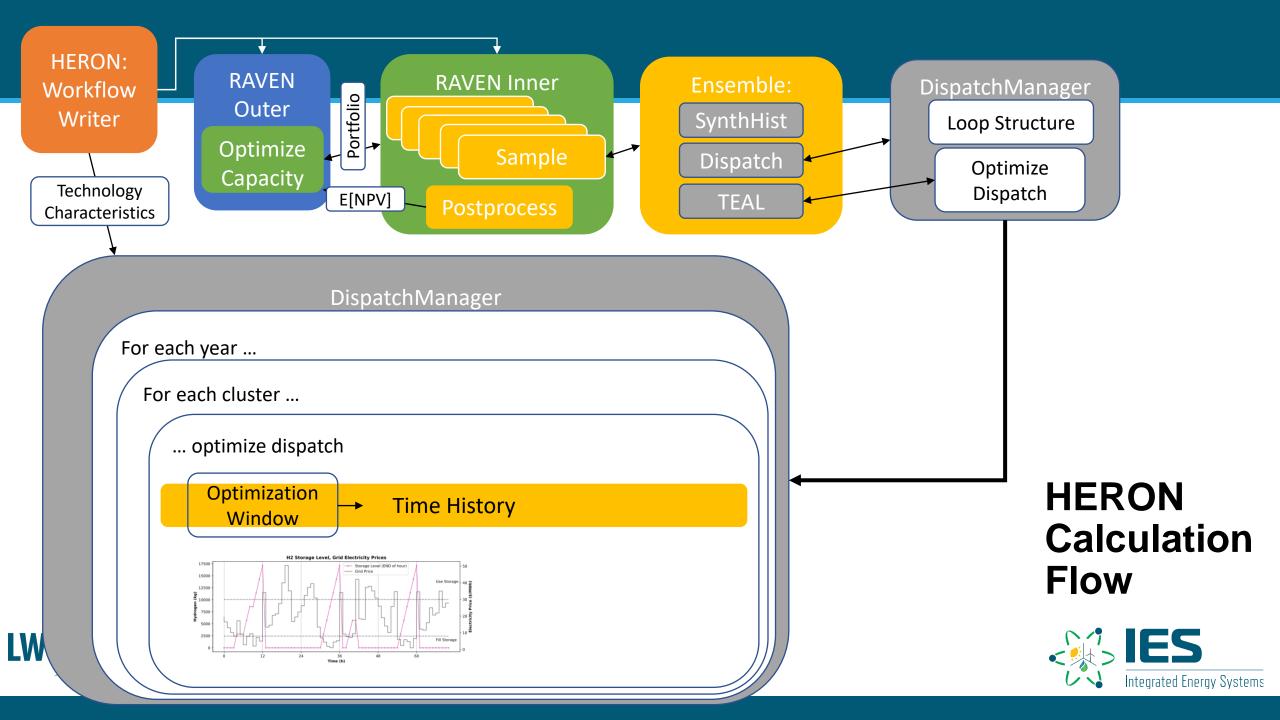


HERON Workshop Examples

A case-by-case training in running HERON

INL/MIS-22-65661


while while the second while the second s

Learning by Example

- HERON cases from basic to complex
- Exercises, follow-alongs
- Examples found in HERON/tests/workshop/
 - This case can be found in workshop/simple/

Example 1

As Simple As They Come

Starter Case

- Components
 - NGCC (natural gas electricity generator)
 - Import (imports electricity from external)
 - Grid (demand to be met)

- Objective
 - How big should the NGCC be built to minimize costs?

Starter Case

- Guiding Physics/Economics (Drivers)
 - Grid
 - fixed demand to be met
 - NGCC
 - Capital cost for sizing
 - Variable cost for dispatching
 - Import
 - Variable cost (expensive!) for providing electricity

Translating to HERON

• See HERON/tests/workshop/simple/heron_input.xml

- Case
 - Global information about the problem
 - Time shape, discount rates, solvers, etc.
- Components
 - Technical and economic properties of each component
 - Produces and Demands
 - Dispatch: Independent and Fixed
- DataGenerators
 - Synthetic History Data Source

Component by Component

• Grid

Technical Specs				
Action	Demands electricity			
Flexibility	Fixed (must meet demand)			
Capacity	From synthetic time series (trained separately)			

Component by Component

• NGCC

Technical Spe		
Action	Produces electricity	
Flexibility	Independent (0 to [Capacity] each hour)	TAI
Capacity	Variable from 10 to 60 GW (note: units not included)	

Economics					
Сарех	Overnight cost of building component per GW installed				
Variable O&M	Operation and fuel costs per GWh produced				

Component by Component

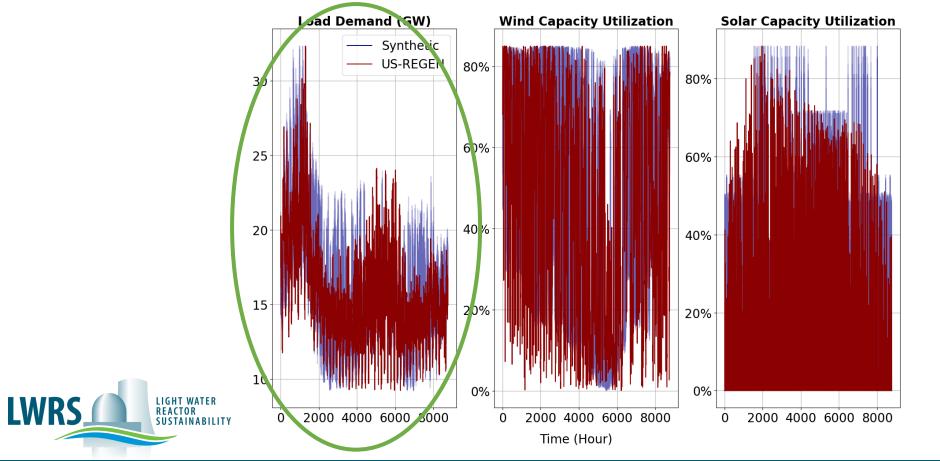
• Import

Technical Spe		
Action		
Flexibility	Independent (0 to [Capacity] each hour)	
Capacity	Large number (infinite source)	

Economics	
Variable O&M	Operation costs per GWh imported

Consider the Case

- Why Import?
 - Why not just have NGCC?
 - If NGCC not enough to meet demand, solve "fails"
 - This doesn't provide useful feedback to optimizer; it doesn't know what's wrong
 - Instead, provide large incentive to meet demand with NGCC



Demand

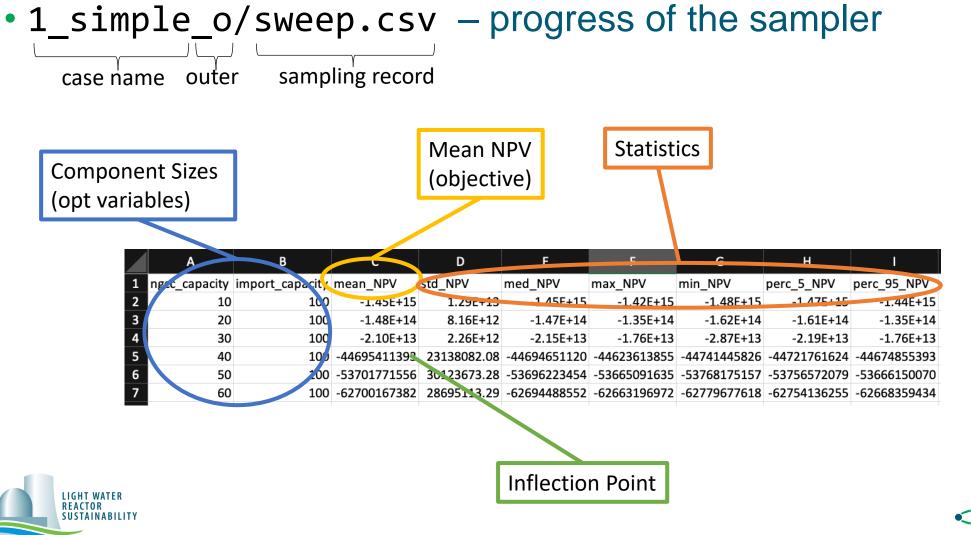
- Stochastically Trained
- Based on NYISO projections from EPRI

See INL/EXT-21-65473, "A Technical and Economic Assessment of LWR Flexible Operation for Generation/Demand Balancing to Optimize Plant Revenue", Dec 2021

Running the Case

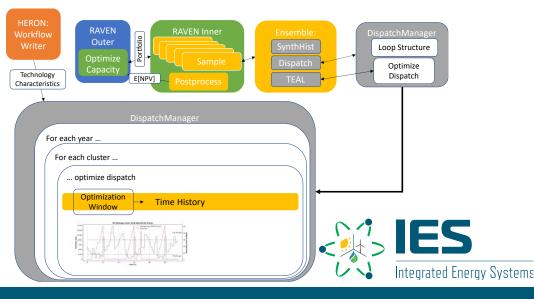
> /path/to/heron heron_input.xml
> /path/to/raven_framework outer.xml

- Sweeping over 6 build sizes
 - ~90 seconds, results may vary by OS, machine
- Things to look at (see following slides):
 - Screen Output
 - 1_simple_o/sweep.csv (spreadsheet) progress



- Screen Output: How To Read the Matrix
 - Sweep Sample
 - Submission of each individual parametric sweep value

ч F		-	-> importing module /Users/talbpw/projects/HERON/tests/workshop/simple/write_inner.py
current working	dir /Users/talbpw/projec	ts/HERON/tests/wor	kshop/simple/1_simple_o/sweep/1/1_simple_i
already exists,	this might imply deletio	n of present files	
(0.04 sec) (ODE MODEL	: Message	-> Execution command submitted: python /Users/talbpw/projects/raven/raven_framework.py inner.xml
(14.30 sec) (ODE MODEL	: Message	-> job "2" submitted!
() ປ	TILS	: Message	-> importing module /Users/talbpw/projects/HERON/tests/workshop/simple/write_inner.py
current working	dir /Users/talbpw/projec	ts/HERON/tests/wor	kshop/simple/1_simple_o/sweep/2/1_simple_i
already exists,	this might imply deletio	n of present files	
(14.31 sec) (ODE MODEL	: Message	-> Execution command submitted: python /Users/talbpw/projects/raven/raven_framework.py inner.xml
(28.35 sec) (ODE MODEL	: Message	-> job "3" submitted!
() (TILS	: Message	-> importing moaule /Users/talbpw/projects/HEP/N/tests/workshop/simple/write_inner.py
current working	dir /Users/talbpw/projec	ts/HERON/tests/wor	kshop/simple/1_simple_o/sweep/3/1_simple_i
already exists,	this might imply deletio	n of present files	
(28.37 sec) (ODE MODEL	: Message	-> Execution command submitted: python /Users/talbpw/projects/raven/raven_framework.py inner.xml
(42.43 sec) (ODE MODEL	: Message	-> job "4" submitted!
() ປ	TILS	: Message	-> importing module /Users/talbpw/projects/HERON/tests/workshop/simple/write_inner.py
current working	dir /Users/talbpw/projec	ts/HERON/tests/wor	kshop/simple/1_simple_o/sweep/4/1_simple_i
already exists,	this might imply deletio	n of present files	


Converting to Optimization

- Converting Input
 - Change <mode> to opt
 - Swap from <sweep_values> to <opt_bounds>
 - Use sweep results to establish bounds

	А		В	С	D	
1	ngcc_capacity		import_capacity	mean_NPV	std_NPV	I
2	10		100	-1.45E+15	1.29E+13	
3	20		100	-1.48E+14	8.16E+12	
4		30	100	-2.10E+13	2.26E+12	
5		40	100	-44695411393	23138082.08	
6		50	100	-53701771556	30123673.28	
7		60	100	-62700167382	28695113.29	

• Optimization requires many more "outer" samples!

- ~90 minutes for this case to converge
 - Time may vary by OS, machine
- ~250 iterations

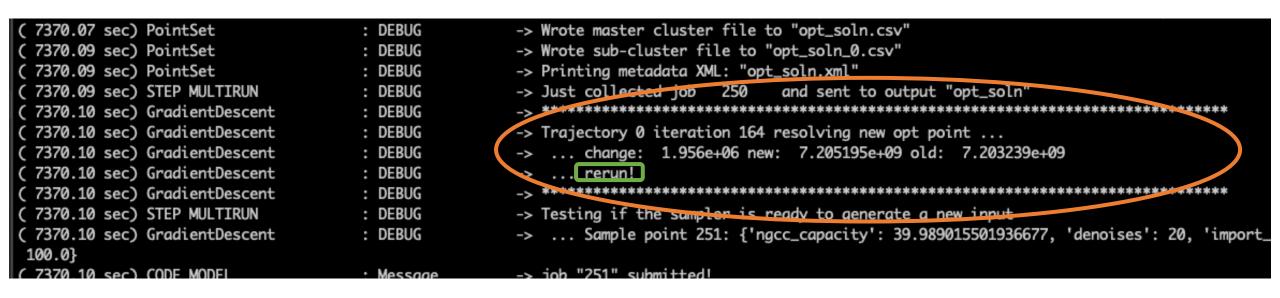
Running the Case

> /path/to/heron heron_input.xml
> /path/to/raven_framework outer.xml

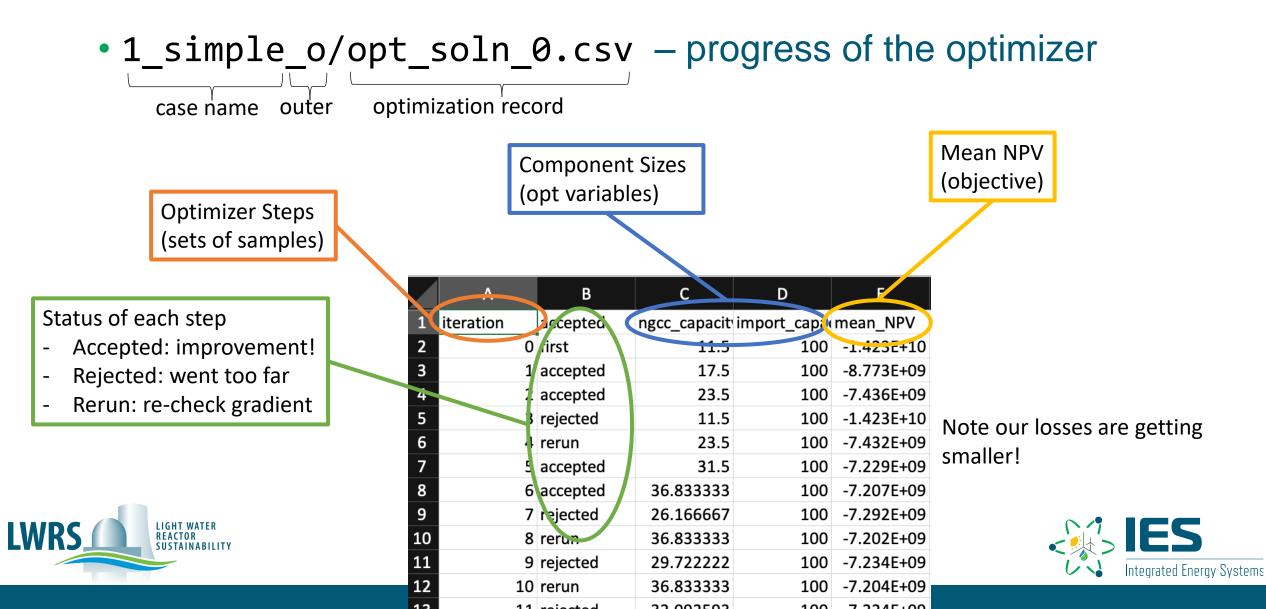
- Optimizing size (takes some time!)
- Things to look at (see following slides):
 - Screen Output
 - 1_simple_o/opt_soln_0.csv (spreadsheet) optimizer progress

- Screen Output: How To Read the Matrix
 - Accepted Sample
 - This means a new optimal point has been found!

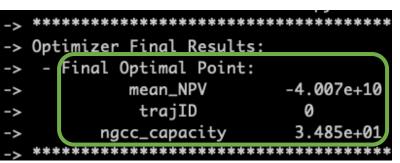
(7704.86 se	c) PointSet	: DEBUG	-> Wrote master cluster file to "opt_soln.csv"
(7704.87 se	c) PointSet	: DEBUG	-> Wrote sub-cluster file to "opt_soln_0.csv"
(7704.88 se	c) PointSet	: DEBUG	-> Printing metadata YML. "opt_soln.xml"
(7704.88 se	c) STEP MULTIRUN	: DEBUG	-> Just collected job 261 and sent to output "opt_soln"
(7704.88 se	c) GradientDescent	: DEBUG	-> ************************************
(7704.88 se	c) GradientDescent	: DEBUG	-> Trajectory 0 iteration 171 resolving new opt point
(7704.88 se	c) GradientDescent	: DEBUG	-> change: -3.520e+05 new: 7.202887e+09 old: 7.203239e+09
(7704.88 se	c) GradientDescent	: DEBUG	-> [accepted!]
(7704.88 se	c) GradientDescent	: DEBUG	-> Convergence Check for Trajectory 0:
(7704.88 se	c) GradientDescent	: DEBUG	-> gradient : False, 3.33e-02 / 1.00e-04
(7704.88 se	c) GradientDescent	: DEBUG	-> objective : False, 2.17e-05 / 1.00e-08
(7704.88 se	c) GradientDescent	: DEBUG	-> same point : False, 0.00e+00 / 1.00e+00
(7704.88 se	c) GradientDescent	: DEBUG	-> Resetting convergence for trajectory 0.
(7704.88 se	c) GradientDescent	: DEBUG	-> ************************************
(7704.88 se	c) STEP MULTIRUN	: DEBUG	-> Testing if the sampler is ready to generate a new input
(7704.89 se	c) GradientDescent	: DEBUG	-> Sample point 262: { ngcc_capacity': 39.989015501936606, 'denoises': 20, 'import_co
	100.0}			
(7704.89 se	c) CODE MODEL	: Message	-> job "262" submitted!

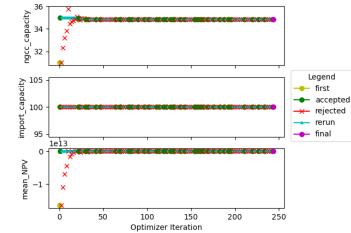

- Screen Output: How To Read the Matrix
 - Rejected Sample
 - This means the new proposed opt point is worse than the old opt point
 - Reasons: inaccurate gradient, too large step, no better points nearby
 - Happens frequently, especially near the end

(7338.73 sec) STEP MULTIRUN	: DEBUG	-> Just collected job 249 and sent to output "opt_eval"
(7338.74 sec) PointSet	: DEBUG	-> Wrote master cluster file to "opt_soln.csv"
(7338.75 sec) PointSet	: DEBUG	-> Wrote sub-cluster file to "opt_soln_0.csv"
(7338.75 sec) PointSet	: DEBUG	-> Printing metadata XML: "opt_soln.xml"
(7338.75 sec) STEP MULTIRUN	: DEBUG	-> Just collected job 249 and sent to output "ont soln"
(7338.76 sec) GradientDescent	: DEBUG	-> ************************************
(7338.76 sec) GradientDescent	: DEBUG	-> Trajectory 0 iteration 163 resolving new opt point
(7338.76 sec) GradientDescent	: DEBUG	-> change: 1.706e+06 new: 7.204945e+09 old: 7.203239e+09
(7338.76 sec) GradientDescent	: DEBUG	-> rejected!
(7338.76 sec) GradientDescent	: DEBUG	-> ************************************
(7338.76 sec) GradientDescent	: DEBUG	-> Canceling grad jobs for traj "0" iteration "163".
(7338.76 sec) GradientDescent	: DEBUG	-> * Submitting new opt and grad points *
(7338.76 sec) GradientDescent	: DEBUG	-> Adding run to queue: {'ngcc_capacity': 39.989015501936677, 'import_capacity': 100.0

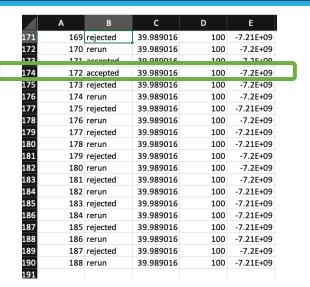


- Screen Output: How To Read the Matrix
 - Rerun Sample
 - Return to best-so-far opt point and rerun the gradient, cut step size
 - Helps to resolve two reasons for rejecting proposed opt points



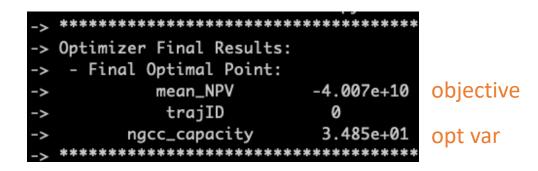


Now that it's done ...


- Things to look at (see next slides)
 - opt_soln_0.csv
 - filter opt CSV by "accepted" to see acceptance path
 - final solution is the last "accepted" point in the CSV
 - opt_path.png
 - visualization of opt_soln_0.csv
 - screen output

LIGHT WATER REACTOR SUSTAINABILITY

Optimization Path



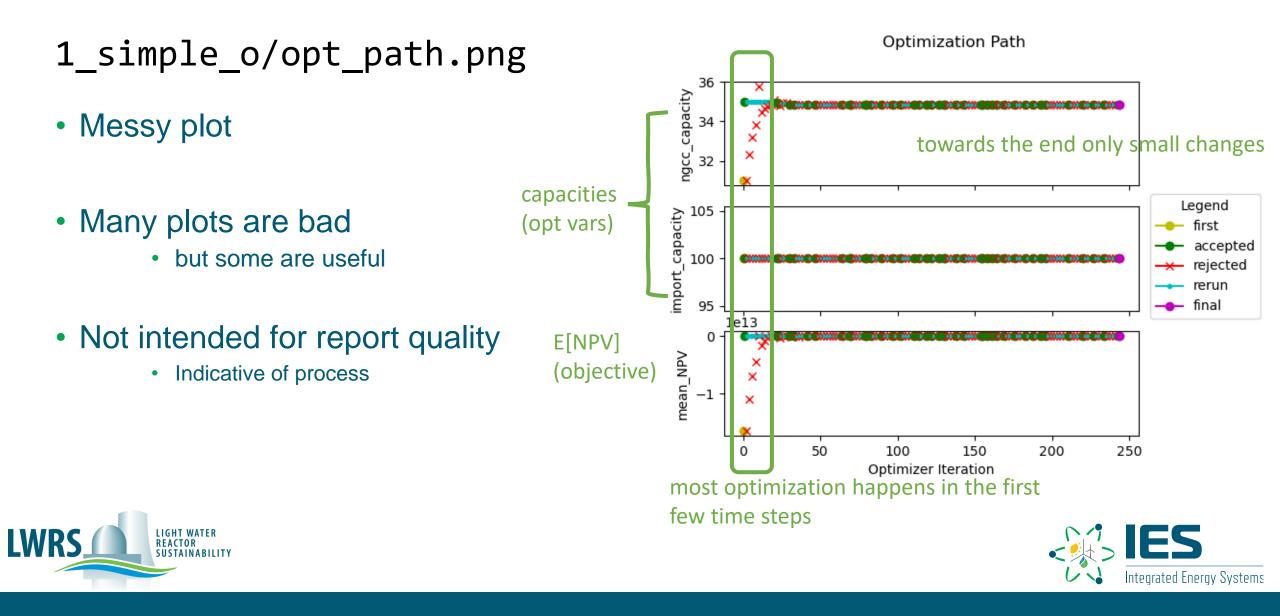
Things to look at now that it's done

Screen Output

- Summary of optimizer status
 - Trajectory that found best point
 - Objective value
 - Opt Vars values

Things to look at now that it's done

1_simple_o/opt_soln_0.csv


- "final" point is solution
 - 243 iterations is low (good!)

1 iteration		accepted	ngcc_capacit	import_capa	mean_NPV	std_NPV	med_NPV
2	0	first	31	100	-1.64E+13	1.50E+12	-1.71E+13
3	1	accepted	35	100	-4.02E+10	20730339	-4.02E+10
238	236	rerun	34.845283	100	-4.006E+10	21055041	-4.006E+10
239 2	237	rejected	34.845283	100	-4.006E+10	16911537	-4.006E+10
240 2	238	rerun	34.845283	100	-4.005E+10	16726200	-4.005E+10
241 2	239	rejected	34.845283	100	-4.006E+10	22230139	-4.006E+10
242 2	240	rerun	34.845283	100	-4.006E+10	17962306	-4.007E+10
243 2	241	rejected	34.845283	100	-4.006E+10	28813156	-4.007E+10
244 2	242	rerun	34.845283	100	-4.006E+10	24491243	-4.005E+10
245	243	accepted	34.845283	100	-4.007E+10	18944063	-4.007E+10
246	243	final	34.845283	100	-4.007E+10	18944063	-4.007E+10
			opt var		objective		

Things to look at now that it's done

Wrap up Example 1

- That's it!
- Takeaways:
 - 3-unit problem, single resource
 - Setting up feasible problems
 - Running and observing HERON runs
 - Viewing results

