

Nuclear Thermal Energy Storage Use Case

IES Force Workshop

Presenter: Rami Saeed, Ph.D.; Rami.Saeed@inl.gov

IES Force Workshop Integrated Energy Systems (IES) Idaho Falls April 5, 2023

Project Team: Rami Saeed, Amey Shigrekar, Daniel Mikkelson; Courtney Otani, Jakub Toman, Vaclav Novotny, Nipun Poly

FY22 M2 Link:<https://doi.org/10.2172/1890160> FY23 M4 link:<https://doi.org/10.2172/1960133> FY22 Pub. link:<https://doi.org/10.1016/j.enconman.2022.115872>

Funding: USDOE Office of Nuclear Energy, DE-AC07-05ID14517

Introduction: High-level Project Scope

Motivating Problem

Advanced Reactor Company X: I want to add thermal energy storage. Which one makes the most sense? How do we choose? How does it work?

Why Thermal Energy Storage (TES) Coupling?

- TES enables NPPs to respond nimbly to market variability and to participate in restructured markets.
- TES systems store nuclear energy in its original form (heat), enabling a more flexible use on the back end, which provides electricity or heat.

Key Research Areas:

- *1. TES ranking* tool that allows advanced reactor companies to down-select TES systems based on their system design.
- *2. Steady-state physical models development* and design considerations of thermal storage coupling for three advanced nuclear reactor (A-LWR, HTGR, and LMFR), each coupled to TES in three different scenarios and different thermal extraction ratios.
- *3. System design cost analysis and stochastic optimization* of NPP-TES based on market price signals in a selected market.
- *4. Transient modeling and grid-wide economics* of each design.

TES Systems

1. Liquid-based sensible heat storage:

> Two-tank molten salt Two-tank thermal oil

Thermocline molten salt

Thermocline thermal oil Hot/Cold water

- 2. Underground (bore-holes and aquifers)
- 3. Thermochemical
- 4. Latent heat storage
- 5. Solid media

Firebrick

Concrete

Ceramics, graphite, and

alloys

6. Steam accumulators.

Motivating Problem

Advanced Reactor Company X: I want to add thermal energy storage. Which one makes the most sense? How do we choose? How does it work?

Why Thermal Energy Storage (TES) Coupling?

- TES enables NPPs to respond nimbly to market variability and to participate in restructured markets.
- TES systems store nuclear energy in its original form (heat), enabling a more flexible use on the back end, which provides electricity or heat.

Key Research Areas:

- *1. TES ranking* tool that allows advanced reactor companies to down-select TES systems based on their system design.
- *2. Steady-state physical models development* and design considerations of thermal storage coupling for three advanced nuclear reactor (A-LWR, HTGR, and LMFR), each coupled to TES in three different scenarios and different thermal extraction ratios.
- *3. System design cost analysis and stochastic optimization* of NPP-TES based on market price signals in a selected market.
- *4. Transient modeling and grid-wide economics* of each design.

• * A-LWR: Advanced light water reactor; HTGR: High temperature gas cooled reactor; LMFR: Liquid metal fast cooled reactor

** PJM: PJM Interconnection LLC (mid-Atlantic); ERCOT: Electric Reliability Council of Texas; Miso: Midwest Independent Transmission System Operator

TES Use Case Methods and FORCE Tools (Selected Results/Examples)

 Σ

1. Steady-State and Physical Models Development

- Thermodynamic analysis of proposed systems
- What is the optimum Coupling approach?
- Develop fully-coupled TES-nuclear steady-state models
- Component-level analysis (heat exchange (HX) technology, geometries, sizes, etc.)
- Cost analysis and cost functions for discrete system sizes.

2. Stochastic Optimization Based on Market Price Signals

- Analyze and reproduce price signals from various markets
- What is the optimum system size for the highest net present value (NPV)?
- TES dispatch profiles of the IES system.

3. Transient Modeling and Dynamic Operation

- How do the dynamic behavior and system controls should look like?
- Is the dispatch profile with highest NPV feasible/reasonable dynamically?

Examples of Nuclear-TES Dynamic Modeling Results from Dymola

TES-Nuclear Coupling Analysis

Two Phase vs. Direct/Single-Phase Heat Transfer to TES

Previous Design Configurations (FY-22):

- Two-phase design approach: *BOP Steam* → *TES* → *BOP TES Steam*
- TES and BOP are coupled in parallel.
- Nuclear island and BOP are coupled as normal with the addition of IES.
- FY22 M2 Link: doi.org/10.2172/1890160

Current Design Considerations (FY-23): Reactor Fluid to TES to Steam

- Single-phase design approach: *Reactor fluid* → *TES* → *BOP TES Steam*
- TES and BOP are coupled in series.
- Nuclear island is fully decoupled from BOP.

Two Phase vs. Direct/Single-Phase Heat Transfer to TES

Previous Design Configurations (FY-22):

- Two-phase design approach: *BOP Steam* → *TES* → *BOP TES Steam*
- Existing balance-of-plant steam generator:
	- No modifications to the nuclear island or balance of plant (BOP).
- Large temperature (exergy*) loss between charging and discharging:
	- => Efficiency loss
	- Boosting the BOP output via TES comes with constraints on steam pressure and temperature delivery yet at a relatively higher normalized cost.

Current Design Considerations (FY-23): Reactor Fluid to TES to Steam

- Single-phase design approach: *Reactor fluid* → *TES* → *BOP TES Steam*
- Heat is transferred "directly" from nuclear island working fluid to TES
	- Minimal exergy loss and efficiency loss caused by TES.
- Discharge side has more flexibility for steam cycle design (higher temperature and pressure steam delivery).
- Heat from TES becomes available at higher temperature for industrial use.

* Potential or energy content of heat that could be converted to work based on 2nd law of thermodynamics by ideal systems.

30% TES Boosting: BOP Operation (Single High Temperature TES)

30% TES Boosting: BOP Operation (Single High Temperature TES)

2X TES Boosting: BOP Operation (Two High and Low Temperature TES)

Single Phase, 2X Boosting Features

- Requires thermodynamic optimization of heat flow between HT and LT TES
- Previous benefits of single TES plant plus these:
	- Fully decoupled nuclear island from BOP
	- Flexible power boosting
	- Reheat increases cycle efficiency (higher Generation capacity) and maintains heat balance between HT and LT TES plants
	- Reheat is standard in coal-fired plant and with molten salt.

Reduce the wetness problem in the steam cycle.

^{*}HT: High temperature; LT: Low Temperature

2X TES Boosting: BOP Operation (Two High and Low Temperature TES)

2X TES Boosting: BOP Operation (Two High and Low Temperature TES)

Maximum Charge Mode

- Zero power output (standby)
- Salt only circulates between He HX and tanks.
- Tanks are getting charged.

Nominal Operation

- Nominal (baseload) power output; 94 MWe
- Salt acts as an intermediate heat transfer fluid between He and steam.
- Tanks bypassed.

2X Boosting Discharge Mode

- Power output at 2X nominal; 188 MWe
- Hot salt from He HX is mixed with salt from hot tank and goes to steam cycle.
- Tanks are being discharged.
- Practical design might involve parallel turbines.

Technoeconomic Analysis (HERON)

Component groupings for HERON

TES Coupling with Advanced Reactors (Dedicated vs Oversized BOP)

• **SYNTHETIC HISTORY GENERATION**

- Real-time hourly market for PJM and ERCOT
- Historical real-time market data using Raven (2018-2047)
- Synthetic history data used in HERON runs

• **Analysis of a network of possible HERON case combinations**

- 3 reactor types for the Steam to molten salt TES heat extraction
- Each in two different markets
- Using two different cluster segment lengths in Heron and different iteration stepping size
- Two different cluster segment lengths and 2 iteration stepping size
- 4 initial component capacities used [avoid incorrect local maximum for NPV values (finding global maximum)]
- 43 cases for each reactor (~129 cases in total)

• **TES optimization results**

• Cont'd (next slide)

• **SYNTHETIC HISTORY GENERATION**

- Real-time hourly market for PJM and ERCOT
- Historical real-time market data using Raven (2018-2047)
- Synthetic history data used in HERON runs

• **Analysis of a network of possible HERON case combinations**

- 3 reactor types for the Steam to molten salt TES heat extraction
- Each in two different markets
- Using two different cluster segment lengths in Heron and different iteration stepping size
- Two different cluster segment lengths and 2 iteration stepping size
- 4 initial component capacities used [avoid incorrect local maximum for NPV values (finding global maximum)]
- 43 cases for each reactor (~129 cases in total)

• **TES optimization results**

• Cont'd (next slide)

Initial Component Capacity

Coupling analysis results from HERON (blue : Baseline [No TES]; gray : Negative ΔNPV; gold : Very Low Capacities; light green : Successful Cases; dark green : Maximum ΔNPV).

Initial Capacities Step size Segment Length Market (hrs) Baseline N/A 24 PJM Default 0.2 24 PJM Default 0.5 24 PJM 25% 0.2 24 PJM 25% 0.5 24 PJM 50% 0.2 24 PJM 50% 0.5 24 PJM 100% 0.2 24 PJM 100% 0.5 24 PJM Baseline N/A 120 PJM Default 0.2 120 PJM Default 0.5 120 PJM 25% 0.2 120 PJM 25% 0.5 120 PJM 50% 0.2 120 PJM 50% 0.5 120 PJM 100% 0.2 120 PJM 100% 0.5 120 PJM Baseline N/A 24 ERCOT Default 0.2 24 ERCOT Default 0.5 24 ERCOT 25% 0.2 24 ERCOT 25% 0.5 24 ERCOT 50% 0.2 24 ERCOT 50% 0.5 24 ERCOT 100% 0.2 24 ERCOT 100% 0.5 24 ERCOT Baseline N/A 24 ERCOT Default 0.2 120 ERCOT Default 0.5 120 ERCOT 25% 0.2 120 ERCOT 25% 0.5 120 ERCOT 50% 0.2 120 ERCOT 50% 0.5 120 ERCOT 100% 0.2 120 ERCOT 100% 0.5 120 ERCOT

LWR - TES Coupling

HTGR - TES Coupling

LMFR - TES Coupling Market Mean NPV Capacity Delta NPV (USD) (Charge, Storage, Discharge) (USD) **PJM** \$1,837,278,574 0,0,0 PJM \$1.834.553.149 0.0.0 $-S2.725.425$ PJM \$1,830,055,859 0.0.0 $-57,222,715$ PIM \$1,823,705,468 -474.54, 1411.81, -520.46 $-$13,573,106$ PJM \$1,823,066,542 -544.65, 1595.08, -720.79 $-$14,212,032$ \$1,830,483,636 -742,47, 2416,47, -923,34 **PJM** $-56.794.938$ \$1,877,403,749 -1680, 4786.57, -1617.12 \$40,125,175 PIM \$1,874,213,266 -1680, 6115.83, -1680 \$36.934.692 PIM \$1,888,576,897 -1675.21,4719.85,-1665.77 \$51,298,323 PJM \$1,862,989,320 0,0,0 PJM \$1,863,529,957 0,0,0 \$540,637 **PJM** \$1,863,542,269 0,0,0 \$552,949 \$1,896,256,614 -828.57, 2341, -1078.5 \$33,267,294 PIM PJM \$1,870,040,327 -566.46, 1716.67, -740.79 \$7,051,007 **PJM** \$1,948,440,997 -1210,42, 4081,88, -1676,11 \$85,451,677 \$1,966,609,642 -1677.54, 4533.75, -1679.48 \$103,620,32 **PJM** \$1,898,939,479 -1680, 10080, -1680 \$35,950,160 PJM \$1,964,267,755 -1637.,4773.23, -1673.6 \$101,278,435 ERCOT \$2,154,163,005 0, 0, 0 ERCOT \$2.291.607.968 -463.4.1971.4. -358.6 \$137,444.963 ERCOT \$2,308,034,577 -326.3,1363.3, -531.8 \$153,871,572 ERCOT \$2,221,576,136 -334.2, 2880.2, -473.5 \$67,413,131 ERCOT \$2,545,872,657 -981.6, 6945, -1460.4 \$391,709,652 ERCOT \$2,421,523,450 -903.1,5770.9, -959.6 \$267,360,445 ERCOT \$2,388,581,887 -1096.7, 1728.4, -900 \$234,418,882 ERCOT \$2,628,654,807 -1679.6, 9985.8, -1603.5 \$474,491,802 ERCOT \$2,655,816,129 -1595.2, 9515.8, -1628 \$501,653,124 ERCOT \$2,299,782,706 0,0,0 ERCOT \$2,483,402,651 -305.1, 1773.9, -314.2 \$183,619,945 ERCOT \$2,440,500,538 -144.2, 2721.9, -571.6 \$140,717,832 ERCOT \$2,680,035,145 -626.2,3403.8, -905 \$380,252,439 \$510,182,223 ERCOT \$2,809,964,929 -1170.4, 3039, -1190 ERCOT \$2,686,940,783 -844,4,4915.8,-826.9 \$387,158,077 ERCOT \$3,119,321,494 -1676.6, 5596.5, -1664.4 \$819,538,788 ERCOT \$3.122.781.527 -1611.5.10080. -1679 \$822,998,821 ERCOT \$3,064,986,593 -1559.9, 9638.9, 1636.3 \$765,203,887

Selected example for A-LWR in ERCOT Optimization result for maximum NPV Optimization result for maximum NPV

Reactor_Heat 150 100 50 **Steam Generation (MWth)** $^{\circ}$ TES Charge rate (MWth) Heat to BOP (MWth) -50 -100 -150 hour Electricity 50 25 Ω TES Turbine output (MWe) BOP Turbine output (MWe) -25 **Electricity grid demand (MWe)** -50 -75 hour Heat (MWth) **Energy (MWh) Tes_Heat (MWth) Energy (MWh)** 150 150 100 Heat to TES 50 TES Level 100 TES Charge rate Ω \leftarrow TES discharge rate -50 50 Heat to BOP -100 -150 ۰0 10 15 20 Ω 5

hour

• **Motivation**

- To understand the dynamic behavior of IES and to evaluate systems' controls
- Further evaluation of integration techniques in transient state conditions
- **Control Scheme**
	- HPT and LPT turbines and a simple TES BOP. Feedwater is sourced directly from the TES BOP.
	- Testing severe cyclical ramping to establish expectations for how the system should respond to dynamic dispatching. i.e.: forcing the system to periodically ramp from full charging mode to a brief full discharge standby period, before demand immediately reverts to full charging mode.

Block diagram of in Dymola model.

• **Motivation**

- To understand the dynamic behavior of IES and to evaluate systems' controls
- Further evaluation of integration techniques in transient state conditions

• **Control Scheme**

- HPT and LPT turbines and a simple TES BOP. Feedwater is sourced directly from the TES BOP
- Testing severe cyclical ramping to establish expectations for how the system should respond to dynamic dispatching. i.e.: forcing the system to periodically ramp from full charging mode to a brief full discharge standby period, before demand immediately reverts to full charging mode.
- Aside from small demand misses immediately before and after demand ramps, the system was capable of meeting demand at all three power levels.

Electric demand and power production curves

Power production from the primary BOP and TES BOP

• **Motivation**

- To understand the dynamic behavior of IES and to evaluate systems' controls
- Further evaluation of integration techniques in transient state conditions

• **Control Scheme**

- HPT and LPT turbines and a simple TES BOP. Feedwater is sourced directly from the TES BOP
- Testing severe cyclical ramping to establish expectations for how the system should respond to dynamic dispatching. i.e.: forcing the system to periodically ramp from full charging mode to a brief full discharge standby period, before demand immediately reverts to full charging mode.
- Aside from small demand misses immediately before and after demand ramps, the system was capable of meeting demand at all three power levels.
- Brief changes steam generator mass flow occur due to "less-thanideal" heating power changes within the feedwater system (oversimplification in the feedwater system design).
- Minimal changes on the primary-side impacts within the nuclear core via coolant feedback mechanisms, control rods respond effectively and maintain the reactor power within +/- 5% of nominal power throughout the simulation.

Steam generator mass flow rate

kg/s]

Reactor thermal power, mainly maintained within +/- 5%

• **Motivation**

- To understand the dynamic behavior of IES and to evaluate systen $\frac{1}{2}$ controls
- Further evaluation of integration techniques in transient state conditions

• **Control Scheme**

- HPT and LPT turbines and a simple TES BOP. Feedwater is sourced directly from the TES BOP
- Testing severe cyclical ramping to establish expectations for how the system should respond to dynamic dispatching. i.e.: forcing the Σ system to periodically ramp from full charging mode to a brief full discharge standby period, before demand immediately reverts to full $\frac{8}{3}$ charging mode.
- Aside from small demand misses immediately before and after demand ramps, the system was capable of meeting demand at all three power levels.
- Brief changes steam generator mass flow occur due to "less-thanideal" heating power changes within the feedwater system (oversimplification in the feedwater system design).
- Minimal changes on the primary-side impacts within the nuclear core $\frac{1}{8}$ via coolant feedback mechanisms, control rods respond effectively and maintain the reactor power within +/- 5% of nominal power throughout the simulation.
- Heat dispatch demand tests (true demand vs production)

Thanks for your attention…

Questions?

Rami Saeed, Ph.D. Rami.Saeed@inl.gov

