

Nuclear Synfuels IES Use Case

FORCE Overview and Training April 4-6, 2023 INL/MIS-23-71825 Dan Wendt, Marisol Garrouste, Jennifer Zhang, Maria Herrera Diaz, Will Jenson, Levi Larson (INL) Amgad Elgowainy, Pingping Sun, Hernan Delgado,

Vincent Capello, Clarence Ng (ANL)

the side property in a line while while an arrive probably the particular in a particular in the second of the

Contents

- What are synfuels?
- Why synfuels?
- How synfuels could be made using nuclear energy
 - Fischer-Tropsch Synfuel Production Process
 - Hydrogen Production
 - Carbon Source(s)
- Dispatch analysis and economic evaluation
- Conclusions

Synfuels as part of a hydrogen economy

- Synthetic fuel production is one of the hydrogen utilization pathways identified by the DOE H2@Scale initiative
- Synthetic fuels are a pathway for largescale hydrogen utilization
- Nuclear energy can be used to provide the energy for synfuel production
 - Low GHG emissions
 - Synfuel production as a dispatchable load

What are Nuclear Synfuels?

- Synthetic liquid hydrocarbon fuels, e.g., diesel fuel, jet fuel, gasoline
- Produced from carbon dioxide and hydrogen with energy input
- Nuclear energy used for hydrogen production (via electrolysis) and to power the synthetic fuel production plant

Source: Escobar (2015) http://dx.doi.org/10.13140/RG.2.1.4250.7360

Conversion processes for synthetic FT fuels

https://ies.inl.gov

Major CO₂ and zero–carbon electricity sources to consider

Elgowainy et al. "Nuclear E-fuel production: Techno-Economic and Environmental Life Cycle Analysis." Presentation to DOE NE Office. April 2022

Fossil power plants

Motivation

- Transportation sector responsible for 27% of total U.S. greenhouse gas emissions
- Nuclear energy can be used to produce H₂ that could be combined with CO₂ to produce synthetic transportation fuels.
- Use of biogenic CO₂ sources could result in fuels with low life-cycle CO₂ emissions.
- Use of CO₂ derived from fossil-based sources could offset emissions associated with petroleum derived transportation fuels.

5,981 million tonnes total U.S. CO2 emissions in 2020 (EPA, 2022, <u>Sources of Greenhouse Gas Emissions</u> | US EPA)

FY-22 INL/ANL Synfuel Analysis

- Evaluate the business case for producing synthetic fuels for the transportation market using CO₂ and energy from existing light water reactors
- Fischer-Tropsch synfuel production process considered. Naphtha, jet, and diesel fuel products specified.
- Hydrogen required for synfuel production to be obtained from a future Nth-of-a-kind high temperature electrolysis plant using nuclear heat and power

Integrated Energy Systems

HERON Optimization Analysis

- Business-As-Usual Operations
 - Price-taker model based on synthetic electricity pricing data derived from historical pricing data
 - Constant sale of electrical power to grid
- Grid-Integrated Nuclear Synfuel IES Operations
 - Price-taker model based on synthetic electricity pricing data derived from historical pricing data
 - Dispatch of electrical power to most profitable application (power sales vs. hydrogen production)
 - Steady-state FT synfuel production
 - H2 storage used to allow continued operation of FT plant when NPP dispatches electric power to grid
 - Optimization performed to determine synfuel production capacity, H2 storage capacity, and dispatch schedule that maximize NPV

Integrated Energy Systems

Grid-Integrated Nuclear Synfuel IES Operations

FT Synfuel production

- FT process model developed by ANL used as basis for process performance and cost estimates
- FT process assumed to operate at steady state

- $(2n+1) H_2 + n CO \to C_n H_{2n+2} + n H_2 O$ (1)
 - $2n H_2 + n CO \rightarrow C_n H_{2n} + n H_2 O \tag{2}$

		FT-100	FT-400	FT-1000
Feedstock	H ₂ (MT/d) 56		255	601
	CO ₂ (MT/d)	348	1,580	3,724
	Naphtha (MT/d) 39		176	414
	Jet fuel (MT/d) 47		213	502
Products	Diesel (MT/d) 26		118	278
	Total FT fuel (gal/d)	40,430	183,030	431,050
Carbo	Carbon conversion		99%	99%
		FT-100	FT-400	FT-1000
	Electric power (H ₂ prod.)	FT-100 86.2	FT-400 390.9	FT-1000 922.2
Input	Electric power (H ₂ prod.) Thermal power (H ₂ prod.)	FT-100 86.2 15.0	FT-400 390.9 68.0	FT-1000 922.2 160.4
Input	Electric power (H ₂ prod.) Thermal power (H ₂ prod.) Electric power	FT-100 86.2 15.0 3.4	FT-400 390.9 68.0 15.5	FT-1000 922.2 160.4 36.6
Input	Electric power (H ₂ prod.) Thermal power (H ₂ prod.) Electric power Naphtha	FT-100 86.2 15.0 3.4 19.7	FT-400 390.9 68.0 15.5 89.6	FT-1000 922.2 160.4 36.6 210.4
Input	Electric power (H ₂ prod.) Thermal power (H ₂ prod.) Electric power Naphtha Jet fuel	FT-100 86.2 15.0 3.4 19.7 24.0	FT-400 390.9 68.0 15.5 89.6 108.7	FT-1000 922.2 160.4 36.6 210.4 256.4
Input Output	Electric power (H ₂ prod.) Thermal power (H ₂ prod.) Electric power Naphtha Jet fuel Diesel	FT-100 86.2 15.0 3.4 19.7 24.0 13.2	FT-400 390.9 68.0 15.5 89.6 108.7 59.9	FT-1000 922.2 160.4 36.6 210.4 256.4 141.3
Input Output	Electric power (H ₂ prod.) Thermal power (H ₂ prod.) Electric power Naphtha Jet fuel Diesel Steam	FT-100 86.2 15.0 3.4 19.7 24.0 13.2 16.1	FT-400 390.9 68.0 15.5 89.6 108.7 59.9 73.0	FT-1000 922.2 160.4 36.6 210.4 256.4 141.3 174.6

Nuclear-Based High Temperature Steam Electrolysis

High Temperature Steam Electrolysis

- HTE has reduced energy requirements relative to LTE
- Use of heat input decreases HTE electrical power requirement
- When low-cost source of heat is available, HTE can reduce energy costs of hydrogen production
- NPP steam used for vaporization of HTSE process feedwater
- Recuperation and electrical topping heat used to achieve 700-800°C stack operating temperature
- Modular construction design basis
- Oxygen byproduct vented to atmosphere using air sweep gas; process schemes that recover oxygen possible.
- Hot standby mode used to minimize ramp times

Cathode:
$$H_2 O(g) + 2e^- \to H_2(g) + O^{2-}$$
 (3)
Anode: $O^{2-} \to \frac{1}{2}O_2(g) + 2e^-$ (4)

Main Steam Turbine/Gen Set 500 kV Switc hyard Electricity Steam Slip strea Grid Con den ser Power Offtake Line Pressurized Water Condensate Reactor Return Power Extraction Heat Inverter Exchangers Thermal Energy DC Delivery Loop De-ionized Water Hydrogen Delivery Heat 0 Exchangers Plant Steam Electrolysis

Nuclear-Based HTSE Process Analysis

Wendt et al. HTSE Process Performance and Cost Estimates. INL-RPT-22-66117, 2022.

	Large Scale H ₂ Production Design Basis
Plant Design Capacity	1087 MW-e
Nominal Hydrogen Production Capacity**	697 tpd
Process Power Requirement, Normal** Electrical Thermal	1087 MW-e 177 MW-t
Process Power Requirement, Hot Standby** Electrical Thermal	10 MW-e 13 MW-t
Specific Energy Consumption Electrical Thermal	37.4 kWh-e/kg H ₂ 6.1 kWh-t/kg H ₂
System H_2 Production Efficiency (energy content of product H_2 divided by electrical energy equivalent input)	89.6% HHV basis
Utilities** Process Water Feed Rate Cooling Water Circulation Rate	72.1 kg/s [1.1 k gpm] 1057 kg/s [17 k gpm]
\sim 7	

Nuclear-Based HTSE Economic Analysis

Parameter	Value	Reference or Note
Stack operating temperature	800°C	O'Brien et al. 2020
Stack operating pressure	5 bars	See Section 2.2.1 of INL/RPT-22-66117
Operating mode	Constant V	
Cell voltage	1.29 V/cell	Thermoneutral stack operating point.
Current density	1.5 A/cm ²	James and Murphy 2021
Stack inlet H ₂ O composition	90 mol%	O'Brien et al. 2020
Steam utilization	80%	See Section 2.2.1 of INL/RPT-22-66117
HTSE modular block capacity	25 MW-dc	1000x capacity increase over O'Brien et al. 2020
Sweep gas	Air	O'Brien et al. 2020
Sweep gas inlet flow rate	Flow set to achieve 40 mol% O ₂ in anode outlet stream	
Stack service life	4 years	HFTO Hydrogen Production Record 20006
Stack degradation rate	0.856%/1000 hr.	HFTO Hydrogen Production Record 20006
Stack replacement schedule	Annual stack replacements completed to restore design production capacity	Based on H2A model stack replacement cost calculations.

Cost of nuclear plant modification (plant shutdown, permitting, piping/equipment retrofits, etc.) not included in analysis

	FT-100	FT-400	FT-1000
H ₂ Production Rate (MT/day)	56	255	601
Energy Consumption			
Electric (MWe)	86.2	390.9	922.2
Thermal (MWth)	15.0	68.0	160.4
Direct Capital Cost (\$/kW-dc)	665	573	547
Total Capital Investment (\$/kW-dc)	861	742	708
Fixed Operating Cost (\$/kW-dc-yr)	61	38	33
Variable Operating Cost, excluding energy costs (\$/MW-dc-hr)	3.4	3.4	3.4

Wendt et al. HTSE Process Performance and Cost Estimates. INL-RPT-22-66117, 2022.

Thermal management Piping, instrumentation, housing Water Supply 1000 MW-dc HTSE CAPEX cost estimate

SOEC SYSTEM COST BREAKDOWN

Industrial Sector CO₂ emissions

	Total CO2 Emission (MMT/year)	Concentration CO2 (%vol)	Lower CO2 Capture Cost (\$/ton)	Upper CO2 Capture Cost (\$/ton)	Average Capture Cost (\$/ton)
Bioethanol	31	99.8%	17.6	33.4	27
Ammonia	35	97.1%	12.4	42.8	20.5
Natural Gas (Power Plant)	645	3.9%	52.9	140	80.0
Coal (Power Plant)	979	12.9%	33.6	124	58.0
Hydrogen	44	44.5%	56.9	156.8	81.9
Iron/Steel	72	23.2%-26.4%	80.0	194.8	110.7
Cement	67	22.4%	67.1	195.2	107.9
Total CO2	1,872				
Total FT fuel (Mgal/year)	217,537				

Zang, G. et al., Environ Sci Technol, vol. 55, no. 11, pp. 7595-7604, 2021. <u>https://www.ncbi.nlm.nih.gov/pubmed/33979128</u>

5,981 million tonnes total U.S. CO2 emissions in 2020 (EPA, 2022, <u>Sources of Greenhouse Gas</u> Emissions | US EPA)

Total U.S. Greenhouse Gas Emissions by Economic Sector in 2020

Greenhouse Gas Emissions from Industry, 1990-2020

https://ies.inl.gov

CO2 feedstock supply

- CO₂ from bioethanol plants considered as carbon feedstock
- CO₂ pipeline transport costs calculated using NETL CO₂ Transport Cost Model

Electricity Pricing Data

Comparison of historical and synthetic electricity pricing data sets for Braidwood Generating Station

East North Central Region Forecasted Fuel Prices (e.g., prospective Braidwood NPP synfuel plant market)

East North Central Region

https://ies.inl.gov

TEA of Nuclear Based Synfuel Production

- Case study of nuclear synfuel IES located at Braidwood NPP completed
- Hydrogen and FT synfuels produced in steady state operating mode
- HERON model used to perform TEA and calculate differential NPV relative to business-as-usual NPP electricity generation
- Reference Case considered a scenario in which the electrolysis and synfuel plants utilized a combined electrical load of 1000 MW-e from one unit of the NPP with the balance of the NPP power output being sold to the electric grid. Power sent to the grid is sold at prices based on historical 2018–2021 PJM LMP at the NPP node.
- The Reference Case specified synthetic fuel pricing equal to that projected for conventional petroleum-based fuels in the U.S. EIA 2021 AEO minus federal taxes and state taxes, as well as marketing and distribution costs.
- The Reference Case incorporates the 2022 IRA clean hydrogen production credits of \$3.00/kg into the revenue stream for the first ten years of operation.

TEA of Nuclear Based Synfuel Production

- The analysis predicts that a 1000 MW nuclearpowered synfuel plant could result in a NPV increase of approximately \$1.7 billion when accounting for the additional revenues from the 2022 IRA clean hydrogen PTCs of \$3/kg.
- Exclusion of the 2022 IRA clean hydrogen PTCs results in a negative NPV relative to the Business-As-Usual Case
- · Sensitivity analysis indicates that:
 - Decreasing the synfuel production capacity decreases the NPV of the nuclear synfuel IES
 - A synfuel price premium increases the NPV
 - The Nuclear-Synfuel IES would have a greater NPV than the business-as-usual case when electricity market prices are low, suggesting that synfuel production could provide a strategy for decreasing the economic risks to NPPs posed by a loss of revenues attributed to falling electricity market prices.

US CO2 Emissions, Transportation Fuel Use, and Generation Capacity

 Nuclear energy can be used to produce H2 that could be combined with CO2 to produce synthetic transportation fuels. Use of biogenic CO2 sources could result in low life-cycle CO2 emissions. Use of CO2 derived from fossil-based sources could offset emissions associated with petroleum derived transportation fuels.

Integrated Energy Systems

https://ies.inl.gov

Idaho National Laboratory

Battelle Energy Alliance manages INL for the U.S. Department of Energy's Office of Nuclear Energy. INL is the nation's center for nuclear energy research and development, and also performs research in each of DOE's strategic goal areas: energy, national security, science and the environment.

WWW.INL.GOV

Grid Integrated Analysis

- Build upon steady state FT process analysis reported on in September 2022
- Evaluate grid-integrated nuclear-synfuel IES
 - Dynamic operation of electrolysis plant
 - Use of hydrogen storage to maintain steady state synfuel plant operations
 - Additional case study locations (different electricity and fuels market pricing; different CO2 sources and transport infrastructure)

