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Overview

• What is a Synthetic Time-Series?
• Why do I need a Synthetic Time-Series?
• How do I produce a Synthetic Time-Series?

• The anatomy of an input file
• Knobs & settings
• Diagnosing model fit 
• Future work

• Examples
• 2020 EPRI IL Study
• 2021 EPRI NY Study

• Q&A



What is a Synthetic Time-Series?

• Concept vs. Concrete
• A stochastic time-dependent signal (not necessarily ”historic”)
• A serialized python object that RAVEN understands and can stochastically sample

• For example:
• An ARMA model trained, using RAVEN, on hourly demand data 2010-2020
• An ARMA model trained, using RAVEN, on hourly forecasted demand projections 

2025-2050

• Many models might be categorized as conceptual synthetic time-series 
• Only models trained using RAVEN are proper Synthetic History objects



ARMA Trained Synthetic Time-Series

Fourier Detrending

ARMA Model



A Synthetic Time-Series is not…

• Model trained using python, R, excel, etc.
• Symbolic Expression
• Data from a model trained using above 

methods 

Static CSVs are a drop-in replacement for Synthetic Time-Series



Why do I need a Synthetic History?

• “Golden Year Problem”
• Common practice: solve optimal portfolio for single history
• Fails to capture range of possible outcomes
• Driving economics is in outlier scenarios

• High demand/low VRE
• Low demand/high VRE
• Sudden ramping demand
• Stressed storage usage

• Historic or Forecasted single scenarios can’t reliably 
capture outliers



How do I train a Synthetic History?

1. Preprocess time-series input data
2. Create a working directory containing:

• CSV pointer file
• CSV input data

3. Create a RAVEN XML input file
4. Run RAVEN via the command line
5. Diagnose output
6. Save PK files for use in HERON

Input Data

Pointer CSV



How do I train a Synthetic History?

Run RAVEN

Here is an example folder structure of a Synthetic History

• At least 3 files required to run RAVEN
• Several files are created during the training
• “arma.pk” is what will be used in HERON
• “synth.csv” is the evaluated output of the model 
• It’s typically easiest to start with a previous input file



The anatomy of an input file

• Simulation – contains all sub-nodes in the xml file

• RunInfo – contains working directory and steps

• Files – defines files that will be used as input during execution

• DataObjects – defines objects created during execution

• Steps – defines the steps used by RAVEN

• Models – contains all model parameters and knobs

• OutStreams – defines files that will be output after execution

• Samplers – contains sampler settings



The anatomy of an input file (Files & RunInfo)

• Working directory can be 
named anything

• 5 typical steps
• Make sure to specify pointer 

CSV
• Variable names are arbitrary, 

just be consistent



The anatomy of an input file (DataObjects)

• Similar to Steps & 
Files

• These objects will be used 
during execution

• Can be referenced 
anywhere in the input file 
by its name



The anatomy of an input file (Steps)

• This section rarely 
changes across different 
scenarios and trainings

• Load, train, and serialize 
are required steps.

• Meta & sample are used 
in model diagnostics

• Advanced cases might 
require more steps



The anatomy of an input file (Models)

• Specify target and pivot parameters

• Specify P, Q, and Fourier

• Segmentation strategy can change 
formulation

• Specify clustering algo and number 
of clusters

• This node will change the most 
across different input files



The anatomy of an input file (OutStreams)

• These are instructions that take in 
DataObjects and output them to 
the file system.

• Typical OutStreams can be:
• CSV
• XML
• Plots (PNG)



The anatomy of an input file (Samplers)

• Larger specified limit will provide 
better diagnostic information

• Will also increase generation 
and run-times



Knobs & Settings - Choosing P & Q

• Choose model order (P, Q) for ARMA 
generator

• Autocorrelation Function
• Partial-Autocorrelation Plots
• Choosing non-convergent P or Q can 

result in RAVEN errors
• Future work aims to improve making 

choices regarding P and Q



Knobs & Settings – Choosing Fourier Basis

• These numbers typically 
have a real-world analog

• Hourly demand data might be: 
[8760, 4380, 168, 24, 12]

• Hourly solar data might be: 
[24, 12]

• Applying a Fast Fourier 
Transform on your input data 
could be useful in 
determining signal 
components with the highest 
normalized amplitude.



Knobs & Settings - Other

• Choosing larger/smaller number of 
clusters could have an impact on 
model fit. 

• <preserveInputCDF> could 
sometimes be a useful option.

• Please refer to the raven user 
manual/guide for more information 
on Synthetic History settings.



Diagnosing Model Fit

• More art than science

• Future work aims to provide 
better automated metrics

• Histograms, Load Duration 
Curve, Time Series Plots

• Cluster information can be 
found in romMeta.xml



Future Work

We are now working on the following 
features:
• A variety of Synthetic History 

models
• LSTM
• GARCH
• Etc.

• Interactive Synthetic History 
training via Jupyter Notebooks

• Improved model diagnostics



Example - 2020 EPRI IL Study

• Hourly demand projections 
2015-2050

• Data had projections every 5 
years (20’, 25’, 30’, 35’…)

• Required interpolation for 
years in-between



Example – 2020 EPRI IL Study



Example – 2021 EPRI NY Study

• Hourly load and 
wind/solar utilization

• Positive Truncation 
for solar

• Specific Fourier 
basis specification
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