INL/MIS-23-71698



# FORCE – Transient Physical Modeling Workshop

### HYBRID Overview April 4, 2023

Presented by: Dr. Daniel Mikkelson

where while the second state of the second state of

### **Session Agenda**

### 1. HYBRID and FORCE (15 min)

- a) How HYBRID fits
- b) What is HYBRID
- c) What is in HYBRID
- 2. Features of Modelica (15 min)
  - a) Inherent advantages
  - b) Replaceable modeling
- 3. How Models are Constructed (30 min)
  - a) Model integration
  - b) Parameterizing and information passing
  - c) Initialization and RAVEN interface



### **How HYBRID Fits Within FORCE**

- INL tools enable IES modeling analysis
  - Physical process, integration modeling
  - Long-term technoeconomic analysis
  - Capacity, dispatch optimization
  - Stochastic analysis, multiple commodities
  - Energy storage, varied markets
  - Real-time optimization





## HYBRID – What Is It?

- The HYBRID repository is a collection of physical models written to characterize:
  - Thermal and electrical integration of different processes
  - Ramp speed
  - Evaluation of novel control schemes
  - Off-design system states
  - Dispatch feasibility
  - Safety limit approaches, considering control system effects

https://github.com/idaholab/HYBRID



[X] HYBRID and FORCE

## **New HYBRID Structure**



| Modelica Dynamic Models  |
|--------------------------|
| Primary Heat Systems     |
| Energy Manifold          |
| Balance of Plant         |
| Industrial Process       |
| Energy Storage           |
| Secondary Energy Source  |
| Primary Heat Switch Yard |
| Electrical Grid          |
| Control System Center    |
| Experimental Systems     |

| Steady-State                   | Transient                                   | ROMs                       | Cost Information         |
|--------------------------------|---------------------------------------------|----------------------------|--------------------------|
| Tech 1                         | Tech 1                                      | Tech 1                     | Tech 1                   |
| Tech 2                         | Tech 2                                      | Tech 2                     | Tech 2                   |
| Tech 3                         | Tech 3                                      | Tech 3                     | Tech 3                   |
| Tech 4                         | Tech 4                                      | Tech 4                     | Tech 4                   |
|                                |                                             |                            |                          |
| Aspen, Mathcad,<br>Excel, etc. | non-Modelica or<br>"Save-total"<br>Modelica | Trained on other<br>models | HERON-readable<br>format |



[X] HYBRID and FORCE

### **V&V Matrix (1/4)**

| Subsystem<br>Name                                  | V&V                      | Example<br>Type | ROM<br>generated | Steady-<br>state<br>model | Published documents                                                                                               | Reference documents                                                                                             | Nominal<br>Conditions,<br>Notable<br>Limitations           |
|----------------------------------------------------|--------------------------|-----------------|------------------|---------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| 4-loop PWR                                         | Face                     | Integrated      |                  |                           | INL/EXT-19-55395                                                                                                  | Systems Summary of a<br>Westinghouse PWR Nuclear Power<br>Plant 1984<br>"PWR Description", Jacopo<br>Buongiorno | 3400 <u>MWt</u> ,<br>Steam: 1750<br>kg/s, 69 bar,<br>285°C |
| Small<br>modular<br>IPWR                           | Data:<br>steady<br>state | Integrated      |                  |                           | INL/CON-16-39032                                                                                                  | https://aris.iaea.org/PDF/NuScale.pdf<br>doj: 10.1016/j.desal.2014.02.023                                       | 160 <u>MWt</u> ,<br>Steam: 35 bar,<br>300°C, 75 kg/s       |
| Small<br>modular<br>natural<br>circulation<br>IPWR | Data:<br>Steady<br>state | Integrated      |                  |                           | INL/EXT-19-55520<br>doj: 10.1080/00295450.2020.1781497<br>doj: 10.1016/j.apenergy.2022.118800<br>INL/RPT-22-69214 | NuScale Standard Plant Design<br>Certification Application                                                      | 200 MWt.<br>Steam: 35 bar,<br>310°C, 84 kg/s               |
| HTGR                                               | Data:<br>Transient       | Integrated      |                  |                           | doi: 10.2172/1890160<br>INL/RPT-22-68222<br>INL/RPT-22-66941<br>INL/RPT-22-69214                                  | doi:<br>10.1016/j.nucengdes.2017.11.041                                                                         | 130 <u>MWt</u> ,<br>Steam: 140 bar,<br>540°C, 50 kg/s      |
| SFR                                                | Physics                  | Individual      |                  |                           | INL/RPT-22-68222                                                                                                  |                                                                                                                 | BOP under<br>construction                                  |



[X] HYBRID and FORCE

## **V&V Matrix (2/4)**

| Subsystem<br>Name  | V&V                      | Example<br>Type | ROM<br>generated | Steady-<br>state<br>model | Published documents                                                                       | Reference documents    | Nominal<br>Conditions,<br>Notable<br>Limitations |
|--------------------|--------------------------|-----------------|------------------|---------------------------|-------------------------------------------------------------------------------------------|------------------------|--------------------------------------------------|
| Solid Media<br>TES | Face                     | Integrated      |                  |                           | doj; 10.1016/j.est.2022.104387<br>doj; 10.1016/j.apenergy.2022.118800<br>INL/EXT-21-61985 | doj; 10.1063/1.4984432 | Nominally<br>concrete,<br>requires steam         |
| 2-tank TES         | Face                     | Integrated      |                  |                           | INL/EXT-18-45505<br>INL/RPT-22-66941<br>INL/RPT-22-69214                                  |                        | Molten salt                                      |
| Thermocline<br>TES | Physics,<br>some<br>data | Integrated      |                  |                           | INL/EXT-20-59195<br>INL/EXT-21-64408<br>INL/EXT-21-61985                                  |                        | Thermal oil                                      |
| Latent heat<br>TES | Physics,<br>some<br>data | Individual      |                  |                           | INL/EXT-21-61985                                                                          |                        |                                                  |
| Battery<br>storage | Physics                  | Integrated      | Х                |                           | INL/MIS-20-60624                                                                          |                        |                                                  |
| Compressed<br>air  | Physics                  | Individual      |                  |                           | INL/RPT-22-66941                                                                          |                        | Single-mode<br>operation                         |



[X] HYBRID and FORCE

## **V&V Matrix (3/4)**

| Subsystem<br>Name                            | V&V                                     | Example<br>Type | ROM<br>generated | Steady-<br>state<br>model | Published documents                  | Reference documents                                                                                | Nominal<br>Conditions,<br>Notable<br>Limitations |
|----------------------------------------------|-----------------------------------------|-----------------|------------------|---------------------------|--------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------|
| Reverse<br>osmosis<br>desalination           | Data:<br><u>steady-</u><br><u>state</u> | Integrated      |                  |                           | INL/EXT-18-45505<br>INL/EXT-15-36451 |                                                                                                    |                                                  |
| High<br>temperature<br>steam<br>electrolysis | Data:<br><u>steady-</u><br><u>state</u> | Integrated      |                  |                           | INL/EXT-16-40305<br>INL/EXT-19-55395 | doj: 10.1016/j.jpowsour.2006.12.081<br>doj: 10.1016/j.ijhydene.2012.12.086<br>doj: 10.2172/1513461 |                                                  |
| HTSE<br>'experimental'                       | Face                                    | Individual      |                  |                           | INL/EXT-22-02188                     |                                                                                                    |                                                  |
| Single-stage<br>balance of<br>plant          | Face                                    | Integrated      |                  |                           | Many                                 |                                                                                                    |                                                  |
| Two-stage<br>balance of<br>plant             | Face                                    | Integrated      |                  |                           | INL/RPT-22-69214                     |                                                                                                    |                                                  |
| Stage-by-<br>stage balance<br>of plant       | Physics                                 | Integrated      |                  |                           | doj: 10.1016/j.apenergy.2022.118800  |                                                                                                    |                                                  |



## **V&V Matrix (4/4)**

| Subsystem<br>Name      | V&V                      | Example<br>Type           | ROM<br>generated | Steady-<br>state<br>model | Published documents                  | Reference documents | Nominal<br>Conditions,<br>Notable<br>Limitations |
|------------------------|--------------------------|---------------------------|------------------|---------------------------|--------------------------------------|---------------------|--------------------------------------------------|
| TEDS loop              | Physics,<br>some<br>data | Individual,<br>Integrated |                  |                           | INL/EXT-20-59195<br>INL/EXT-21-64408 |                     |                                                  |
| MAGNET<br>loop         | Physics                  | Individual,<br>Integrated |                  |                           | INL/EXT-22-02188                     |                     |                                                  |
| Subsystem<br>Name      | V&V                      | Example<br>Type           | ROM<br>generated | Steady-<br>state<br>model | Published documents                  | Reference documents | Nominal<br>Conditions,<br>Notable<br>Limitations |
| Steam<br>manifold      | Physics                  | Integrated                |                  |                           | Many                                 |                     |                                                  |
| Switchyard             | Physics                  | Integrated                |                  |                           | Many                                 |                     |                                                  |
| Electric grid          | Physics                  | Integrated                |                  |                           | Many                                 |                     |                                                  |
| Natural gas<br>turbine | Face                     | Integrated                | Х                |                           | INL/EXT-16-40305                     |                     |                                                  |



## **HYBRID Dynamic Modeling**

- HYBRID evaluates the feasibility of systems developed within FORCE and provides constraint data necessary for broader system evaluations
  - An ideal intermediary for determining:
    - Integration design
    - Control methods
    - Ramp rate feasibility
    - Determination of off-design **behaviors**



[X] HYBRID and FORCE

## Where FORCE Interacts?

- Inputs are system sizing
  - Values taken from RAVEN/HERON in optimization workflow
- Control strategies desired
  - Each subsystem has its own control strategy
- Planned coupling methodologies
  - Supervisory control
  - Minimum electrical and heat rates for each subsystem
- Thermal and electrical demands for each subsystem through time.
  - Total demand an input from balancing authority routine





Example Fluid Coupling Points

11

## Why Modelica?

- Rapid Development
  - Fidelity level controlled by user
  - Fast feedback from development environment
- Collaborative
  - Model repositories can be open-source like HYBRID with standardized connections
  - FMI/FMU allows for "black-box" sharing
- Flexible, Adaptable
  - Modeling across multiple physical domains
  - Models modifiable for existing and new users



## **Modelica Features**

### **Equation Based (acausal)**

Order of computations is not decided at modeling time

- Equations do not specify input/outputs
  - $x + y = z^x + yz$
- Solutions direction adapts to data flow



## **Built for Dynamic Problems**

- Time integration handled by solver
  - der(v) = a + bx(t)



Example from the Modelica Standard Library



#### HYBRID and FORCE

#### [X] Modeling Features

13

### **Dynamic Simulation**

- Time dependent aspects of a system
- Concerned with concepts of:
  - States: Attributes described at a point in time
  - Events: Occurrences that trigger a state transition
  - Transitions: A change in the state of an object
  - Actions: Instantaneous operation that results due to an event
  - Activities: Ongoing operations upon the state of an object Example of a dynamic problem



HYBRID and FORCE

#### [X] Modeling Features

14

## **Replaceable Modeling**





#### HYBRID and FORCE

#### [X] Modeling Features

15

## **Design Capability**

- Physical models are focused on process system bases
  - A few coupled subsystems (nuclear plant + gas turbine + thermal storage + grid + ancillary process)
  - Focus within Hybrid has been single energy park systems





Model Construction

## **Design Capability**

- Figures of merit
  - Demand missed
  - System stability
    - System pressure, temperature, thermal gradients, valve positioning, etc.
  - Control strategy effects
     on each subsystem
  - Carbon accounting





Model Construction

## Interconnectability

- Create self-contained process models
- These models calculate on- and offdesign behavior
- Coupling occurs with other Modelica models or process models built via FMI/FMU

HYBRID and FORCE



## Interconnectability

- Models are configured using interchangeable base classes for ease of use and adaptability of models into different configurations
- Can be exported in the FMI/FMU standard to allow robust interoperability with industry



HYBRID and FORCE

## **Energy Arbitrage IES**

- NuScale-style SMR
- High-fidelity balance of plant
- Integrated-concrete thermal-energy storage system (dual network model)
- Week-long-scaled dispatchable demand profile calculated and input



# **Energy Arbitrage IES**



HYBRID and FORCE

[X] Modeling Features

## PHS– Westinghouse (WH) Style: 4-Loop (PWR)





Model Construction

#### HYBRID and FORCE

## **Energy Manifold**







| HYBRID and FORCE

### [X] Modeling Features

## **ES – Sensible Thermal Energy Storage (TES)**







| HYBRID and FORCE

#### [X] Modeling Features

24

## **High-Temperature Steam Electrolysis (HTSE)**





**HYBRID** and FORCE

#### X Modeling Features

#### **Model Construction**

L I

## **Reverse Osmosis (RO) Desalination**



| HYBRID and FORCE

#### [X] Modeling Features

#### Model Construction

Integrated Energy Systems

### **Natural Gas Fired Turbine**







HYBRID and FORCE

#### [X] Modeling Features

27

## **DETAIL Model**





| HYBRID and FORCE

28

# Integration of Existing Models

- Drag and drop of models is the most common method of building top-level systems
  - Example: IES, Reactor model
  - Prebuilt models combined in unique ways for simulation setup
  - Primary simulation difficulties are system-wide initialization and proper calibration of controls
- Subcomponents can be combined to make usable components
  - Example: Shell and tube heat exchanger
  - Configured models allow for standardized components for full system builds
  - Primary difficulty is to ensure appropriate parameter pass-through



# Integration of Existing Models

- Using existing models takes advantage of object building within Modelica
- The same components can be used repeatedly
- Subsystems have been tested and verified
- Ports impose consistent communication between components



# **Example: IES**



# **Example: IES – Reactor Model**

- Sixteen different drag-and-drop components make up reactor model
  - Includes pipes, sensors, feedwater pump, primary heat exchanger, nuclear core model, and control signals
  - Some of these models have drag-and-drop subcomponents
- Subsystem level is self-contained, only needing feed flow and steam produced connections.



# **Example: IES – Turbogenerator**

- Turbogenerator system demonstrates five connection types
  - Fluid (blue)
  - Heat (red solid)
  - Mechanical (gray)
  - Electrical (red solid)
  - Control (red & green dashed)



# Integration of Existing Models

- Construction using pre-existing models creates instantiations of the objects within current level model
- Typically, ports and connectors are used to communicate information between objects
- Assuming the building block models exist, the construction process can happen quite intuitively
  - Example: Shell & tube heat exchanger
- Parameter passing must be handled at every level



# **Example: Shell & Tube Heat Exchanger**

- What do we need to make a STHX?
  - Shell fluid flow path

Tube fluid flow path



 Pipe model to establish conductivity



Possibly a vectorization reversing unit to allow for counter-flow OR concurrent flow

 External fluid connectors





X Model Construction

HYBRID and FORCE

# **Example: Shell & Tube Heat Exchanger**

- Finished product thermally connects two fluid streams
- One final question: how do we properly pass parameters to next-level modeling?
  - Each component in the figure on the right has its own parameters
  - For example: what is the diameter of the tube in the tube model?





## Integration of Existing Models: Passing Parameters

- Typically, parameters must be re-declared at every level
  - Default values can be put in, as the highest modeling level will be distributed down
- "Replaceable" keyword allows for all potential values matching the type of that parameter to be selected via drop-down menu
  - For example: two-phase media types
- Parameters can be grouped into data structures for easier pass-through

| STHX in NHES.Systems    | .PrimaryHeatSystem.SMR_Generic.Components.SMR_Taveprogram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ?                      |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| General Shell Initializ | tion Tube Initialization Wall Initialization Advanced Visualization Add modifiers Attributes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        |
| Component               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Icon                   |
| News                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
| Name STRA               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
| Comment                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9                      |
| 1odel                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
| Path TRANSFORM          | HeatExchangers.GenericDistributed_HX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | GenericDistrib.        |
| Comment A (i.e., no inl | et/outlet plenum considerations, etc.) generic heat exchanger with discritized fluid and wall volumes where concurrent/counter flow is specified mass flow direction.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |
| Paramotore              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
| a u u                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
| nParallel               | TRANCCORM Elvid Channel Blatikute Wedels Distributed/clumes 1D LiesEndersees Challes Trube IV /D is also and The Committee IV  |                        |
| Medium, chell           | TRANSFORM. Huld. Closure Relations. Geometry _Models. Distributed Volume_LD. Healt. Xolarget _ site land to be the Xolarget  |                        |
| Medium_snen             | Modelica Media Water StandardWater × III > Tube cide medium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |
| Material tubeWall       | TRANSFORM Media Solids SS304 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |
| counterCurrent          | the construction of the co | nd flux vector order   |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
| ressure Loss            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
| FlowModel_shell         | TRANSFORM.Fluid.ClosureRelations.PressureLoss.Models.DistributedPipe_1D.SinglePhase_Developec 🗸 🔢 🛌 Shell side flow models (i.e., momentum, pressure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | loss, wall friction)   |
| FlowModel_tube          | TRANSFORM.Fluid.ClosureRelations.PressureLoss.Models.DistributedPipe_1D.SinglePhase_Developec 🗸 🏢 🗾 Tube side flow models (i.e., momentum, pressure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | e loss, wall friction) |
| leat Transfer           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
| HeatTransfer_shell      | TRANSFORM.Fluid.ClosureRelations.HeatTransfer.Models.DistributedPipe_1D_MultiTransferSurface.Nus_SinglePhase_2Region 🗸 🏢 🔸 Shell side coeffici                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ent of heat transfer   |
| HeatTransfer_tube       | TRANSFORM.Fluid.ClosureRelations.HeatTransfer.Models.DistributedPipe_1D_MultiTransferSurface.Alphas_TwoPhase_3Region 🗸 💷 + Tube side coeffici                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ent of heat transfe    |
| InternalHeatGen_tube    | GenericHeatGeneration 🗸 🧾 🕨                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |
| InternalHeatGen_shell   | GenericHeatGeneration 🗡 鼲 🔸                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |
| race Mass Transfer ——   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
| T                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11 12 12 12            |

Parameter interface seen above. Interface method depends on type of parameter (single value, package selection, set of values, etc)

X Model Construction



HYBRID and FORCE

## **Passing Parameters**

| eneral Shell Initializ                                                                                                                                                                                         | zation Tube Initialization Wall Initialization Advanced Visualization Add modifiers Attributes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| omponent                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Icon                                                                                                                                                                                           |
| Name STHX                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                |
| Comment                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AA                                                                                                                                                                                             |
| del                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | j j                                                                                                                                                                                            |
| Path TRANSFORM                                                                                                                                                                                                 | I HeatFychanners GenericDistributed HX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | GenericDistrib                                                                                                                                                                                 |
| Comment A (i.e., no in                                                                                                                                                                                         | Interestioning is some representation of the second secon<br>second second sec |                                                                                                                                                                                                |
| arameters                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                |
| Parallel                                                                                                                                                                                                       | for the state of identical parallel HXs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                |
| Geometry                                                                                                                                                                                                       | TRANSFORM.Fluid.ClosureRelations.Geometry.Models.DistributedVolume_1D.HeatExchanger.ShellAndTubeHX (D_i_st v III Seometry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                |
| Medium_shell                                                                                                                                                                                                   | Modelica.Media.Water.StandardWate 🗸 🛙 Edit 🖥 Shell side medium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                |
| Medium_tube                                                                                                                                                                                                    | Modelica.Media.Water.StandardWater 💙 📧 🗡 Tube side medium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                |
| 4aterial_tubeWall                                                                                                                                                                                              | TRANSFORM.Media.Solids.SS304 V III + Tube wall material                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                |
| counterCurrent                                                                                                                                                                                                 | true VI Swap shell side temperature ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ad flux voctor order                                                                                                                                                                           |
| counter current                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | iu nux vector order                                                                                                                                                                            |
| ressure Loss                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                |
| ressure Loss                                                                                                                                                                                                   | TRANSFORM.Fluid.ClosureRelations.PressureLoss.Models.DistributedPipe_1D.SinglePhase_Developec >> ) III • Shell side flow models (i.e., momentum, pressure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | e loss, wall friction)                                                                                                                                                                         |
| ressure Loss<br>FlowModel_shell<br>FlowModel_tube                                                                                                                                                              | TRANSFORM.Fluid.ClosureRelations.PressureLoss.Models.DistributedPipe_1D.SinglePhase_Developer       III       Shell side flow models (i.e., momentum, pressure         TRANSFORM.Fluid.ClosureRelations.PressureLoss.Models.DistributedPipe_1D.SinglePhase_Developer       III       Tube side flow models (i.e., momentum, pressure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | e loss, wall friction)<br>e loss, wall friction)                                                                                                                                               |
| essure Loss<br>FlowModel_shell<br>FlowModel_tube<br>eat Transfer                                                                                                                                               | TRANSFORM.Fluid.ClosureRelations.PressureLoss.Models.DistributedPipe_1D.SinglePhase_Developec >>       III •       Shell side flow models (i.e., momentum, pressure         TRANSFORM.Fluid.ClosureRelations.PressureLoss.Models.DistributedPipe_1D.SinglePhase_Developec >>       III •       Tube side flow models (i.e., momentum, pressure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e loss, wall friction)<br>e loss, wall friction)                                                                                                                                               |
| essure can bit<br>essure Loss<br>lowModel_shell<br>lowModel_tube<br>eat Transfer<br>HeatTransfer                                                                                                               | TRANSFORM.Fluid.ClosureRelations.PressureLoss.Models.DistributedPipe_1D.SinglePhase_Developec >       III       Shell side flow models (i.e., momentum, pressure TRANSFORM.Fluid.ClosureRelations.PressureLoss.Models.DistributedPipe_1D.SinglePhase_Developec >       III       Tube side flow models (i.e., momentum, pressure TRANSFORM.Fluid.ClosureRelations.PressureLoss.Models.DistributedPipe_1D_MultTransferSurface.Nus_SinglePhase_2Region >>         TRANSFORM.Fluid.ClosureRelations.HeatTransfer.Models.DistributedPipe_1D_MultTransferSurface.Nus_SinglePhase_2Region >>       III       Shell side coefficient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | e loss, wall friction)<br>e loss, wall friction)<br>ent of heat transfer                                                                                                                       |
| essure can the<br>essure Loss<br>NowModel_shell<br>NowModel_tube<br>eat Transfer<br>HeatTransfer_shell<br>HeatTransfer_tube                                                                                    | TRANSFORM.Fluid.ClosureRelations.PressureLoss.Models.DistributedPipe_1D_SinglePhase_Developec >       III · Shell side flow models (i.e., momentum, pressure TRANSFORM.Fluid.ClosureRelations.PressureLoss.Models.DistributedPipe_1D_SinglePhase_Developec >         TRANSFORM.Fluid.ClosureRelations.PressureLoss.Models.DistributedPipe_1D_MultTransferSurface.Nus_SinglePhase_2Region >>       III · Shell side coefficit         TRANSFORM.Fluid.ClosureRelations.HeatTransfer.Models.DistributedPipe_1D_MultTransferSurface.Nus_SinglePhase_2Region >>       III · Shell side coefficit         TRANSFORM.Fluid.ClosureRelations.HeatTransfer.Models.DistributedPipe_1D_MultTransferSurface.Alphas_TwoPhase_3Region >>       III · Tube side coefficit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | e loss, wall friction)<br>e loss, wall friction)<br>ent of heat transfer<br>ent of heat transfer                                                                                               |
| essure Loss<br>FlowModel_shell<br>FlowModel_tube<br>eat Transfer<br>HeatTransfer_shell<br>HeatTransfer_tube<br>InternalHeatGen_tube                                                                            | TRANSFORM.Fluid.ClosureRelations.PressureLoss.Models.DistributedPipe_1D_SinglePhase_Developec >       III · Shell side flow models (i.e., momentum, pressure         TRANSFORM.Fluid.ClosureRelations.PressureLoss.Models.DistributedPipe_1D_SinglePhase_Developec >       III · Tube side flow models (i.e., momentum, pressure         TRANSFORM.Fluid.ClosureRelations.PressureLoss.Models.DistributedPipe_1D_MultTransferSurface.Nus_SinglePhase_ZRegion >>       III · Shell side coeffici         TRANSFORM.Fluid.ClosureRelations.HeatTransfer.Models.DistributedPipe_1D_MultTransferSurface.Alphas_TwoPhase_3Region >>       III · Tube side coeffici         TRANSFORM.Fluid.ClosureRelations.HeatTransfer.Models.DistributedPipe_1D_MultTransferSurface.Alphas_TwoPhase_3Region >>       III · Tube side coeffici                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | e loss, wall friction)<br>e loss, wall friction)<br>e loss, wall friction)<br>ent of heat transfer<br>ent of heat transfer                                                                     |
| essure Loss<br>FlowModel_shell<br>FlowModel_tube<br>eat Transfer<br>HeatTransfer_shell<br>HeatTransfer_tube<br>internalHeatGen_tube<br>internalHeatGen_shell                                                   | TRANSFORM.Fluid.ClosureRelations.PressureLoss.Models.DistributedPipe_1D_SinglePhase_Developer       III       Shell side flow models (i.e., momentum, pressure         TRANSFORM.Fluid.ClosureRelations.PressureLoss.Models.DistributedPipe_1D_SinglePhase_Developer       III       Tube side flow models (i.e., momentum, pressure         TRANSFORM.Fluid.ClosureRelations.PressureLoss.Models.DistributedPipe_1D_MultTransferSurface.Nus_SinglePhase_2Region       III       Shell side coeffici         TRANSFORM.Fluid.ClosureRelations.HeatTransfer.Models.DistributedPipe_1D_MultTransferSurface.Alphas_TwoPhase_3Region       III       Shell side coeffici         TRANSFORM.Fluid.ClosureRelations.HeatTransfer.Models.DistributedPipe_1D_MultTransferSurface.Alphas_TwoPhase_3Region       III       Tube side coeffici         GeneridHeatGeneration       III       GeneridHeatGeneration       III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | e loss, wall friction)<br>e loss, wall friction)<br>ent of heat transfer<br>ent of heat transfer                                                                                               |
| essure Loss<br>FlowModel_shell<br>FlowModel_tube<br>eat Transfer<br>HeatTransfer_shell<br>HeatTransfer_tube<br>internalHeatGen_tube<br>internalHeatGen_shell<br>ace Mass Transfer_                             | TRANSFORM.Fluid.ClosureRelations.PressureLoss.Models.DistributedPipe_1D_SinglePhase_Developec >       III       Shell side flow models (i.e., momentum, pressure transfer.Models.DistributedPipe_1D_SinglePhase_Developec >       III       Tube side flow models (i.e., momentum, pressure transfer.Models.DistributedPipe_1D_MultiTransferSurface.Nus_SinglePhase_2Region >>       III       Shell side coefficit         TRANSFORM.Fluid.ClosureRelations.HeatTransfer.Models.DistributedPipe_1D_MultiTransferSurface.Nus_SinglePhase_2Region >>       III       Shell side coefficit         TRANSFORM.Fluid.ClosureRelations.HeatTransfer.Models.DistributedPipe_1D_MultiTransferSurface.Alphas_TwoPhase_3Region >>       III       Tube side coefficit         GenericHeatGeneration >>       III       GenericHeatGeneration >>       III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | e loss, wall friction)<br>e loss, wall friction)<br>ent of heat transfer<br>ent of heat transfer                                                                                               |
| essure can the<br>essure Loss<br>FlowModel_shell<br>FlowModel_tube<br>eat Transfer                                                                                                                             | TRANSFORM.Fluid.ClosureRelations.PressureLoss.Models.DistributedPipe_1D.SinglePhase_Developec >       III       Shell side flow models (i.e., momentum, pressure         TRANSFORM.Fluid.ClosureRelations.PressureLoss.Models.DistributedPipe_1D.SinglePhase_Developec >       III       Tube side flow models (i.e., momentum, pressure         TRANSFORM.Fluid.ClosureRelations.PressureLoss.Models.DistributedPipe_1D_MultTransferSurface.Nus_SinglePhase_2Region >       III       Shell side coeffici         TRANSFORM.Fluid.ClosureRelations.HeatTransfer.Models.DistributedPipe_1D_MultTransferSurface.Alphas_TwoPhase_3Region >       III       Shell side coeffici         CenericHeatGeneration >       III       GenericHeatGeneration >       III       CenericHeatGeneration >         GenericHeatGeneration >       III       GenericHeatGeneration >       III       CenericHeatGeneration >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | e loss, wall friction)<br>e loss, wall friction)<br>ent of heat transfer<br>ent of heat transfer                                                                                               |
| essure Loss<br>FlowModel_shell<br>FlowModel_tube<br>eat Transfer<br>HeatTransfer<br>HeatTransferbe<br>InternalHeatGen_shell<br>race Mass Transfer<br>InternalTraceGen_tube<br>InternalTraceGen_shell           | TRANSFORM. Fluid. ClosureRelations. PressureLoss. Models. DistributedPipe_1D. SinglePhase_Developer >       III • Shell side flow models (i.e., momentum, pressure (TRANSFORM. Fluid. ClosureRelations. PressureLoss. Models. DistributedPipe_1D. SinglePhase_Developer >       III • Tube side flow models (i.e., momentum, pressure (TRANSFORM. Fluid. ClosureRelations. HeatTransfer. Models. DistributedPipe_1D. MultiTransferSurface. Nus_SinglePhase_2Region >         TRANSFORM. Fluid. ClosureRelations. HeatTransfer. Models. DistributedPipe_1D_MultiTransferSurface. Nus_SinglePhase_2Region >       III • Shell side coeffici         TRANSFORM. Fluid. ClosureRelations. HeatTransfer. Models. DistributedPipe_1D_MultiTransferSurface. Alphas_TwoPhase_3Region >       III • Shell side coeffici         GenericHeatGeneration >       III • GenericHeatGeneration >       III • Shell side coeffici         GenericHeatGeneration >       III • GenericHeatGeneration >       III • Shell side coeffici                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | e loss, wall friction)<br>e loss, wall friction)<br>e loss, wall friction)<br>ent of heat transfer<br>ent of heat transfer<br>ent of heat transfer                                             |
| ressure carbin<br>ressure Loss<br>FlowModel_shell<br>FlowModel_tube<br>eat Transfer_<br>HeatTransfer_shell<br>HeatTransfer_tube<br>InternalHeatGen_tube<br>InternalHeatGen_shell<br>race Mass Transfer         | TRANSFORM.Fluid.ClosureRelations.PressureLoss.Models.DistributedPipe_1D.SinglePhase_Developec >> III • Shell side flow models (i.e., momentum, pressure         TRANSFORM.Fluid.ClosureRelations.PressureLoss.Models.DistributedPipe_1D.SinglePhase_Developec >> III • Tube side flow models (i.e., momentum, pressure         TRANSFORM.Fluid.ClosureRelations.PressureLoss.Models.DistributedPipe_1D_MultiTransferSurface.Nus_SinglePhase_2Region >> III • Shell side coeffici         TRANSFORM.Fluid.ClosureRelations.HeatTransfer.Models.DistributedPipe_1D_MultiTransferSurface.Alphas_TwoPhase_3Region >> III • Tube side coeffici         CenericHeatGeneration >> III •         GenericHeatGeneration >> III •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | e loss, wall friction)<br>e loss, wall friction,<br>ent of heat transfer<br>ent of heat transfer                                                                                               |
| essure Loss<br>essure Loss<br>FlowModel_shell<br>FlowModel_tube<br>at Transfer<br>teatTransfer_tube<br>internalHeatGen_tube<br>internalHeatGen_shell<br>ace Mass Transfer<br>nternalTraceGen_shell             | TRANSFORM.Fluid.ClosureRelations.PressureLoss.Models.DistributedPipe_1D_SinglePhase_Developec >       III • Shell side flow models (i.e., momentum, pressure TRANSFORM.Fluid.ClosureRelations.PressureLoss.Models.DistributedPipe_1D_SinglePhase_Developec >       III • Tube side flow models (i.e., momentum, pressure TRANSFORM.Fluid.ClosureRelations.PressureLoss.Models.DistributedPipe_1D_MultTransferSurface.Nus_SinglePhase_2Region >       III • Shell side coefficit         TRANSFORM.Fluid.ClosureRelations.HeatTransfer.Models.DistributedPipe_1D_MultTransferSurface.Alphas_TwoPhase_3Region >       III • Tube side coefficit         TRANSFORM.Fluid.ClosureRelations.HeatTransfer.Models.DistributedPipe_1D_MultTransferSurface.Alphas_TwoPhase_3Region >       III • Tube side coefficit         GenericHeatGeneration >       III • GenericHeatGeneration >       III • GenericHeatGeneration >         GenericHeatGeneration >       III • GenericTraceGeneration >       III • GenericTraceGeneration >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | e loss, wall friction)<br>e loss, wall friction)<br>e loss, wall friction)<br>ent of heat transfer<br>ent of heat transfer<br>ent of heat transfer<br>etton $\sim$ [I] ,<br>etton $\sim$ [I] , |
| essure Loss<br>FlowModel_shell<br>FlowModel_tube<br>eat Transfer<br>HeatTransfer_tube<br>InternalHeatGen_tube<br>InternalHeatGen_shell<br>ace Mass Transfer<br>internalTraceGen_tube<br>internalTraceGen_shell | TRANSFORM.Fluid.ClosureRelations.PressureLoss.Models.DistributedPipe_1D.SinglePhase_Developec >       III •       Shell side flow models (i.e., momentum, pressure         TRANSFORM.Fluid.ClosureRelations.PressureLoss.Models.DistributedPipe_1D_SinglePhase_Developec >       III •       Tube side flow models (i.e., momentum, pressure         TRANSFORM.Fluid.ClosureRelations.PressureLoss.Models.DistributedPipe_1D_MultiTransferSurface.Nus_SinglePhase_2Region >>       III •       Shell side coeffici         TRANSFORM.Fluid.ClosureRelations.HeatTransfer.Models.DistributedPipe_1D_MultiTransferSurface.Alphas_TwoPhase_3Region >>       III •       Shell side coeffici         TRANSFORM.Fluid.ClosureRelations.HeatTransfer.Models.DistributedPipe_1D_MultiTransferSurface.Alphas_TwoPhase_3Region >>       III •       Tube side coeffici         GenericHeatGeneration >>       III •       Shell side coeffici       GenericHeatGeneration >>       III •         GenericHeatGeneration >>       III •       GenericTraceGeneration >>       III •       GenericTraceGeneration >>       III •         CenericTraceGeneration >>       III •       GenericTraceGeneration >>       III •       GenericTraceGeneration >>       III •         CenericTraceGeneration >>       III •       GenericTraceGeneration >>       III •       GenericTraceGeneration >>       III •         CenericTraceGeneration >>       III •       GenericTraceGeneration >>       III •       GenericTraceGeneration >>       II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | e loss, wall friction)<br>e loss, wall friction)<br>ent of heat transfer<br>ent of heat transfer<br>ent of heat transfer<br>ent of heat transfer                                               |

| redeclare STHX.Ge                                            | eometry in NHES.Systems.PrimaryHeatSystem.SMR_Generic.Components.SMR_Taveprogram ? X                                                                                                                                                                                                                                                                                                                              |
|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| General Shell Sid                                            | de Tube Side Add modifiers Attributes                                                                                                                                                                                                                                                                                                                                                                             |
| nTubes<br>nR<br>nSurfaces_tube                               | data.nTubes_steamGenerator       # of tubes per heat exchanger         2       Number of radial nodes in wall (r-direction)         1       Number of transfer (heat/mass) surfaces                                                                                                                                                                                                                               |
| height_a_tube<br>height_b_tube<br>angle_tube<br>dheight_tube | 0       m       Elevation at port_a: Reference value only. No impact on calculations.         height_a_tube + sum(dheights_tube)       m       Elevation at port_b: Reference value only. No impact on calculations.         0       •       Vertical angle from the horizontal (-pi/2 < x <= pi/2)         length_tube*sin(angle_tube)       m       Height(port_b) - Height(port_a) distributed by flow segment |
| Inputs: Tube Wall —                                          |                                                                                                                                                                                                                                                                                                                                                                                                                   |
| drs                                                          | fill(th_wall/nR, nR, nV)                                                                                                                                                                                                                                                                                                                                                                                          |
| th_wall                                                      | data.th_steamGenerator_tube                                                                                                                                                                                                                                                                                                                                                                                       |
| Inputs                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                   |
| dimension_tube                                               | data.d_steamGenerator_tube_inner • m Characteristic dimension (e.g., hydraulic diameter)                                                                                                                                                                                                                                                                                                                          |
| crossArea_tube                                               | 0.25*pi*dimension_tube*dimension_tube • m <sup>2</sup> Cross-sectional flow areas                                                                                                                                                                                                                                                                                                                                 |
| perimeter_tube                                               | 4*crossArea_tube/dimension_tube • m Wetted perimeters                                                                                                                                                                                                                                                                                                                                                             |
| length_tube                                                  | data.length_steamGenerator_tube • m Pipe length                                                                                                                                                                                                                                                                                                                                                                   |
| roughness_tube                                               | 2.5e-5 m Average heights of surface asperities                                                                                                                                                                                                                                                                                                                                                                    |
| surfaceArea_tube                                             | {if i == 1 then perimeter_tube*length_tube else 0 for i in] 💷 • m <sup>2</sup> Inner surface area                                                                                                                                                                                                                                                                                                                 |
|                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                              | OK Cancel Info                                                                                                                                                                                                                                                                                                                                                                                                    |



] HYBRID and FORCE

### Modeling Features

38

# Integration of Existing Models

- Using existing models takes advantage of object building within Modelica
- The same components can be used repeatedly
- Ports impose consistent communication between components
- When building sub-models and subsystems, make sure that relevant parameter passing methods are set up



# **Parameter Sweeping**

- Dymola has internal parameter sweeping method
- Allows for output space generation across single altered parameter at a time
- Auto generates separate output files to keep post simulation
- Auto generates plotting set of output values desired by user



**Modeling** Features

tegrated Energy Systems





#### ] HYBRID and FORCE

#### Modeling Features





#### HYBRID and FORCE

#### Modeling Features







#### HYBRID and FORCE

#### Modeling Features

## **Manual Parameter Sweep**

- In the case that a model is sensitive to initial conditions, it is possible to manually alter parameters via the dsfinal.txt file to effectively manually parameter sweep
- Combined with script generation, this process can be automated so that there is less user attention required



- Model initialization is key to obtaining results, especially if a simulation stabilization time frame can be avoided
- One method of creating an initial state is to use a robust outside result to create an initial conditions table
  - ASPEN HYSYS is often used

| General A     | dd modifiers Attri   | butes                                                 |     |                                         |    |
|---------------|----------------------|-------------------------------------------------------|-----|-----------------------------------------|----|
| Component —   |                      |                                                       | Ico | n                                       |    |
| Name d        | lataInitial          |                                                       |     |                                         |    |
| Comment       |                      |                                                       | 6   | DataInitial_                            | NS |
|               |                      |                                                       |     |                                         | ٦  |
| 4odel N       | HES.Systems.PrimaryH | leatSystem.SMR_Generic.Components.Data.DataInitial_NS |     | Generic                                 | J  |
| Comment       |                      |                                                       |     |                                         |    |
| Daramotore    |                      |                                                       |     |                                         |    |
|               |                      | [/                                                    | -   |                                         |    |
| d_start_core  | _coolantSubchannel   | {0.72999456787,0.70768652344,0.68389465332,0.65836    |     | • g/cm³                                 |    |
| p_start_core  | _coolantSubchannel   | {12903247.0,12898190.0,12893307.0,12888614.0}         |     | • Pa                                    |    |
| h_start_core  | _coolantSubchannel   | {540.2313,558.79304,576.1813,580.9483}                | 1.0 | · K                                     |    |
| d start bott  | _coordinationariter  | (0.6592090057.0.65920466046)                          | 100 | J/Kg                                    |    |
| n start hot   | eg<br>eg             | {1.08 E1756 1.06 10010}                               | 100 | g/un™<br>► har                          |    |
| T start bott  | ~9<br>ea             | {324 70516357 324 676477051                           |     | • • • • • • • • • • • • • • • • • • • • |    |
| h start hot   | ~9<br>en             | {1488030 125 1488878 6251                             |     | ► 1/kg                                  |    |
| d start cold  | ~9<br> e0            | {0.75105032617\                                       |     | <ul> <li>a/mg</li> </ul>                |    |
| n start cold  | lea                  | {129.36737}                                           |     | yon<br>≻har                             |    |
| T start cold  | Lea                  | (285 19472656)                                        |     | • °C                                    |    |
| h start cold  | Lea                  | {1260434,125}                                         |     | • 1/ka                                  |    |
| d start STH   | X tube               | {0.80191125488.0.11777983093.0.06753452301.0.04695    |     | ▶ a/cm³                                 |    |
| p_start_STH   | <br>X_tube           | {39.281535,39.2524275,39.1300875,38.91694,38.610355   |     | <ul> <li>bar</li> </ul>                 |    |
| T_start_STH   | <br>X_tube           | {248.02053223,249.22127686,249.04030762,248.721887    |     | • °C                                    |    |
| h_start_STH   | X_tube               | ,2374421.2,2749133.0,2919464.0,2980839.5,3004198.5}   |     | ▶ J/kg                                  |    |
| d_start_STH   | X_shell              | {0.66202679443,0.66976708984,0.68217218018,0.69354    |     | ▶ g/cm³                                 |    |
| p_start_STH   | X_shell              | {128.10909,128.16239,128.19835,128.23497,128.27221,   |     | • bar                                   |    |
| T_start_STH   | X_shell              | 01654,547.5736,541.4915,535.5601,527.6039,516.3904}   |     | ۰к                                      |    |
| h_start_STH   | X_shell              | {1480592.25,1463564.625,1435439.875,1408754.25,138    | П   | J/kg                                    |    |
| d_start_inlet | Plenum               | 0.751                                                 | 037 | ▶ g/cm³                                 |    |
| p_start_inlet | Plenum               | 129.                                                  | 207 | • bar                                   |    |
| T_start_inlet | Plenum               | 285.                                                  | 193 | • °C                                    |    |
| h_start_inlet | Plenum               | 1.26043e                                              | +06 | • J/kg                                  |    |
| d_start_outle | etPlenum             | 0.658                                                 | 335 | ∙ g/cm³                                 |    |
| p_start_outle | etPlenum             | 128.                                                  | 884 | • bar                                   |    |
| T_start_outle | etPlenum             | 324.                                                  | 724 | • °C                                    |    |
| h_start_outle | etPlenum             | 1.48899e                                              | +06 | <ul> <li>J/kg</li> </ul>                |    |
| Ts_start_cor  | e_fuelModel_region_1 | 326, 753.8575; 620.802, 676.6141, 692.713, 665.06805] | Ш   | •                                       |    |
| Ts_start_cor  | e_fuelModel_region_2 | 629.82477; 547.5703, 569.67633, 586.9591, 594.09796]  |     | •                                       |    |
| Ts_start_cor  | e_fuelModel_region_3 | 5, 590.4041; 540.2313, 558.79364, 576.1813, 586.9483] |     | •                                       |    |
| T_start_STH   | X_tubeWall           | , 554.01654, 560.9657, 576.07135, 583.2033, 585.6959] |     | • К                                     |    |
| p_start_pres  | surizer              | 12807                                                 | 852 | • Pa                                    |    |
| level_start_p | ressurizer           | 1.18                                                  | 567 | • m                                     |    |
| h_start_pres  | surizer              | 1.47822e                                              | +06 | • J/kg                                  |    |
| d_start_pres  | surizer_tee          | 0.658                                                 | 202 | ∙ g/cm³                                 |    |
| p_start_pres  | surizer_tee          | 12807                                                 | 852 | • Pa                                    |    |
| T start pres  | surizer tee          | 586.90                                                | 674 | • к                                     |    |



HYBRID and FORCE

- Inherent method within Dymola to save within a model the initial conditions
- When used, the output space is saved within the model directly as adjustments to the attributes

| Save Start Values in Model                                                                                                                                                                                                                                                                             |      | ?                               | ×      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------------------------------|--------|
| Source for start values                                                                                                                                                                                                                                                                                | <br> |                                 |        |
| <ul> <li>Current Variable Browser content</li> <li>Initialize the model and save the results</li> </ul>                                                                                                                                                                                                |      |                                 |        |
| Store options                                                                                                                                                                                                                                                                                          |      |                                 |        |
| <ul> <li>Store values in current model</li> <li>Store values in new model</li> </ul>                                                                                                                                                                                                                   |      |                                 |        |
| Name:                                                                                                                                                                                                                                                                                                  |      |                                 |        |
| SMR_IES_CTES                                                                                                                                                                                                                                                                                           |      |                                 |        |
| Description:                                                                                                                                                                                                                                                                                           |      |                                 |        |
| Extends:                                                                                                                                                                                                                                                                                               |      |                                 |        |
| NHES.Systems.Examples.SMR_IES_CTES                                                                                                                                                                                                                                                                     |      |                                 |        |
| Insert in package:                                                                                                                                                                                                                                                                                     |      |                                 |        |
| NHES.Systems.Examples                                                                                                                                                                                                                                                                                  |      | ✓ <sup>10</sup> / <sub>10</sub> |        |
| Open new class in:                                                                                                                                                                                                                                                                                     |      |                                 |        |
| This tab                                                                                                                                                                                                                                                                                               |      |                                 | $\sim$ |
| Advanced options for storing start guesses                                                                                                                                                                                                                                                             |      |                                 |        |
| Save changes in parameters and in initial values of states                                                                                                                                                                                                                                             |      |                                 |        |
|                                                                                                                                                                                                                                                                                                        |      |                                 |        |
|                                                                                                                                                                                                                                                                                                        |      |                                 |        |
| Additionally, save changes in the start attributes of:                                                                                                                                                                                                                                                 |      |                                 |        |
| Iteration variables     Iteration variables and torn variables                                                                                                                                                                                                                                         |      |                                 |        |
| Outputs, auxiliary variables, and states                                                                                                                                                                                                                                                               |      |                                 |        |
| Only save start guesses for additional variables at start time.<br>Other useage may cause unwanted changes in the model<br>parametrization. These advanced options are only intended for<br>saving start guesses and must not be used to continue<br>simulations from times later than the start time. |      |                                 |        |
| Advanced <<                                                                                                                                                                                                                                                                                            | OK   | Can                             | cel    |



```
DUP
 CS (
  BV_openingNominal(k(start=0.001)),
  PID_BV_opening(
    I(k(start=0.1)),
                                               actuatorBus(opening BV(start=0.001), opening TCV(start=0.5)),
    addP(
     k1(start=1.0),
                                               boundary(port(T(start=421.1691093331664))),
     u1(start=0.030000001485),
     u2(start=0.030000001485)),
                                               boundary2 (medium (
    gainPID(k(start=-1.0)),
    gainTrack(k(start=-1.1111111111111111))),
    gain_u_m(k(start=5E-10)),
                                                      T(start=298.16763607879363),
    gain_u_s(k(start=5E-10)),
    limiter (uMax(start=0.999), uMin(start=-0.0009)),
                                                      T degC(start=25.017636078793657),
    null bias(k(start=0.0)),
    vMax(start=0.999),
                                                      d(start=998.544943058541),
    yMin(start=-0.0009)),
  PID TCV opening(
                                                      p bar(start=34.47380000000004),
    I(k(start=2.0)),
    addP(
     k1(start=1.0),
                                                      sat(Tsat(start=514.8425665422984)),
     u1(start=0.0086185),
     u2(start=0.0086185)),
                                                      u(start=104571.53362749857)), ports(h outflow(start={108023.9370710939}),
    gainTrack(k(start=1.1111111111111111))),
    gain u m(k(start=2.5E-09)),
                                                         - / - + - - + - ( 2//7200 01) ) )
    gain u s(k(start=2.5E-09)),
    limiter(uMax(start=0.5), uMin(start=-0.4999)),
                                                       Kt(start=0.013324090093760938),
    null bias(k(start=0.0)),
    u s(start=3447400.0),
                                                       Q mech(start=65056859.70577499),
    yMax(start=0.5),
    vMin(start=-0.4999)).
                                                       Q units(start={42261285.79911617,42261285.79911617}),
  TCV openingNominal(k(start=0.5)),
  delavStartBV(start=100.0),
                                                       Q units start(start={42261285.79911617,42261285.79911617}),
  p_Nominal1(k(start=3447400.0)),
   switch P setpoint(y(start=60000000.297)),
                                                       Obs(start={-9732855.946228676,-9732855.946228676}),
  valvedelav(k(start=100.0)),
  valvedelayBV(k(start=100.0))),
                                                       T a start(start=293.15),
 PID(
  I(k(start=2.0)),
                                                       T b start(start=293.15),
  addP(
                                                       T nominal(start=293.15),
    k1(start=1.0),
    u1(start=1.0),
                                                       bubble in(d(start=820.3581983078773), h(start=1013666.6724914373)
    u2(start=1.0)),
  gainPID(k(start=100000000.0)),
                                                       bubble out(d(start=989.8436373961912), h(start=191812.29519356362
  gainTrack(k(start=1.11111111111111112E-08)),
  gain_u_m(k(start=0.002374343174368348)),
                                                       d nominal(start=13.671247252758716),
  gain_u_s(k(start=0.002374343174368348)),
  k m(start=0.002374343174368348),
                                                       dew in(d(start=15.307197090608243), h(start=2803284.170249812)),
   k s(start=0.002374343174368348),
  limiter(
                                                       dew out(d(start=0.06816373081854721), h(start=2583886.8570257137)
    u(start=100000000.0),
    uMax(start=1E+60),
                                                       h a start(start=2997670.0),
    uMin(start=-1E+60)),
  null bias(k(start=100000000.0)),
                                                       h b start(start=2058530.3155751962),
  u_m(start=421.1691093331664),
  yMin(start=-1E+60)),
                                                       h is(start=2070197.5860370956),
 PID1(
  PID(
                                                       h out(start=2209318.4481315315),
    I(k(start=2.0)),
    Nd(start=10.0),
                                                       p a start(start=3337380.0),
    Ni(start=0.9),
                                                       p b start(start=10000.0),
    Td(start=0.1),
    Ti(start=0.5),
                                                       p inlet nominal(start=3337380.0),
    addP(
     k1(start=1.0),
                                                       p outlet nominal(start=10000.0),
     u1(start=1.0),
     u2(start=1.0)),
                                                       p ratio(start=0.0032668200354825697),
    gainPID(k(start=100.0)),
    gainTrack(k(start=0.011111111111111111))),
                                                       portHP(
    a_{2} m = m(k(c_{2}) + m(k_{1}))
                                                                                                                                                                           Integrated Energy Systems
```

#### | HYBRID and FORCE

#### Modeling Features

 Another method of importing initial conditions is using default output format



 This method can be used to alter parameters by altering the text file



# **RAVEN Interfacing**

- Default initialization or final status text file is standard RAVEN input method
- Values identified in RAVEN input substituted

-2 1.000000000000001E-01 280 # nuScale Tave enthalpy Pressurizer CR.PID.k 1 -2 5.000000000000000E-01 9.99999999999997E-61 1.000000000000000E+100 280 # nuScale Tave enthalpy Pressurizer CR.PID.Ti 1 -2 1.000000000000001E-01 1.0000000000000000E+100 280 # nuScale\_Tave\_enthalpy\_Pressurizer\_CR.PID.Td 1 -2 0 0 280 # nuScale\_Tave\_enthalpy\_Pressurizer\_CR.PID.yb 1 5.000000000000000E-01 -2 0 256 # nuScale\_Tave\_enthalpy\_Pressurizer\_CR.PID.k\_s 6 -2 5.000000000000000E-01 0 256 # nuScale\_Tave\_enthalpy\_Pressurizer\_CR.PID.k\_m 6 -2 5.66000000000001E+00 0 280 # nuScale\_Tave\_enthalpy\_Pressurizer\_CR.PID.yMax 1 -2 0 0 280 # nuScale\_Tave\_enthalpy\_Pressurizer\_CR.PID.yMin 1



# **RAVEN Interface**

- Executable made via Dymola and path input into RAVEN
  - User should make sure that "evaluate parameters at translation" option is disabled
- Dymola is subType "Dymola" in the input deck
- Input name type is "Dymolalnitialisation"



# **Model Analysis**

- Scripting allows for manual creation of parameter sweep
  Method is: Translate(), import(), simulate()
- Dymola has internal parameter sweep methods
  - Only one parameter can be changed at once
- RAVEN interface uses standard input to accept new parameter methods
- Reminder from previous: models can use text reading for input, which can read dispatch information generated by another code



## **HYBRID** Expansion

Development of concurrent model structures

- Modelica transient models
- Aspen HYSYS steady-state models
- Reduced order models based on Modelica transient modeling
- Subsystem costing information
- Full FORCE vertical integration
- Continued expansion of modeling capabilities



# Why Aspen?

- Industry-standard thermodynamic and chemical analyses tool
- Allows for process changes, flow rearrangements
- Chemical reactors allow for process calculations





## Why ROMs?

- Allow for shorter computation times
- Accuracy relative to trained model will be identical
- RAVEN contains many ROM training methods
- DMDc is nominal method of choice, allows for analysis of systems that use controllers



### **Questions?**



## HYBRID – What Is It?

- Hybrid is a collection of physical models written to characterize:
  - Thermal and electrical integration of different processes
  - Ramp speed
  - Evaluation of novel control schemes
  - Off-design system states
  - Dispatch feasibility
  - Safety limit approaches, considering control system effects

https://github.com/idaholab/HYBRID

