

Framework for Optimization of ResourCes and Economics (FORCE) Overview

Integrated Energy Systems (IES) Tools: Capability Overview and Training April 4, 2023

Aaron Epiney Modeling and Simulation Lead DOE-NE Integrated Energy Systems

aaron.epiney@inl.gov

IES Guiding Questions

- What are economically and technically viable options for integrated energy system (IES) coupling to nuclear power plants in specific grid energy systems?
- What is the statistically ideal mix for Nuclear-IES within various markets?
- What are driving economic factors that existing and future nuclear technology can leverage though IES production coupling?
- What are optimal coupling strategies between IES technologies and nuclear power plants? Safety?
- What is the governing control scheme for IES?

Energy system modeling, analysis, and evaluation for energy system optimization

Graded approach to identify design, and evaluate hybrid system architectures

Aspen Plus[®] and HYSYS[®] Process Models

Process modeling addresses technical and economic value proposition Modelica[®], Aspen Dynamics[®]

Dynamic modeling addresses technical and control feasibility

HERON (INL System Optimization)

System modeling addresses whole-system coordination

Consideration of Resource—Technology—Economic—Market Potential

FORCE

- Framework for Optimization of ResourCes and Economics
 - Analysis of interconnected energy-related resources
 - Steam, electricity, hydrogen, water desalination, synthetic fuels, etc.
 - Coupling and control of IES
 - Carbon reduction of the existing energy grid via optimization of energy flows
 - Techno-economic analysis of integrated energy systems
 - What is the potential economic benefit of introducing technologies to a system?
 - Greenfield or existing systems
 - Dynamic analysis of interconnected subsystems
 - Unit sizing, dispatch optimization
 - Alternative market opportunities for existing generators

IES Analysis Tool Suite

- INL tools enable IES modeling analysis
 - Physical process, integration modeling and safety analysis.
 - Long-term technoeconomic analysis
 - Capacity, dispatch optimization
 - Stochastic analysis, multiple commodities
 - Energy storage, varied markets
 - Real-time optimization and control

See <u>https://ies.inl.gov/SitePages/System_Simulation.aspx</u> for more information and to access opensource tools.

Software Map

https://ies.inl.gov

IES change the paradigm for energy generation and use, so we are breaking new ground in energy system planning and analysis

- Many other efforts exist to optimize energy systems, specifically for the grid
- What makes the IES approach different
 - Nuclear has different requirements that must be considered
 - Nuclear Quality Assurance (NQA 1)
 - Safety, licensing
 - Reactor operation
 - Full probabilistic approach is unique
 - Detailed system dynamics are included
 - Cross-sectoral energy system options are embraced
- Leveraging existing and ongoing efforts and toolsets to further enhance analysis and system optimization capability

Machine learning, optimization

- Synthetic time series
 - Energy demand, load
 - Market pricing
 - Wind, solar availability
- Multilevel optimization
 - Conjugate gradient
 - Simultaneous perturbation stochastic Approximation
- Stochastic analysis
 - Metric quantification
- Machine learning and AI
 - Surrogate training
 - Validation
 - Serialization

Idaho National Laboratory

WWW.INL.GOV